Amy T Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346234/publications.pdf

Version: 2024-02-01

279701 143943 3,551 68 23 57 citations h-index g-index papers 73 73 73 4421 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evidence of Arctic Fox (Vulpes lagopus) Survival Following Exposure to Rabies Virus. Journal of Wildlife Diseases, 2022, 58, .	0.3	1
2	Accounting for animal movement improves vaccination strategies against wildlife disease in heterogeneous landscapes. Ecological Applications, 2022, 32, e2568.	1.8	10
3	Special Issue "Innovative Techniques and Approaches in the Control and Prevention of Rabies Virus― Viruses, 2022, 14, 845.	1.5	О
4	Capture-Recapture Reveals Heterogeneity in Habitat-Specific Mongoose Densities and Spatiotemporal Variability in Trapping Success in St. Kitts, West Indies. Caribbean Journal of Science, 2022, 52, .	0.2	3
5	Influence of landscape attributes on Virginia opossum density. Journal of Wildlife Management, 2022, 86, .	0.7	8
6	Serological Responses of Raccoons and Striped Skunks to Ontario Rabies Vaccine Bait in West Virginia during 2012–2016. Viruses, 2021, 13, 157.	1.5	9
7	Modeling Mongoose Rabies in the Caribbean: A Model-Guided Fieldwork Approach to Identify Research Priorities. Viruses, 2021, 13, 323.	1.5	11
8	Oral Rabies Vaccination of Small Indian Mongooses (Urva auropunctata) with ONRAB via Ultralite Baits. Viruses, 2021, 13, 734.	1.5	5
9	Cytoarchitectural characteristics associated with cognitive flexibility in raccoons. Journal of Comparative Neurology, 2021, 529, 3375-3388.	0.9	8
10	Rabies post-exposure healthcare-seeking behaviors and perceptions: Results from a knowledge, attitudes, and practices survey, Uganda, 2013. PLoS ONE, 2021, 16, e0251702.	1.1	5
11	Data-Driven Management—A Dynamic Occupancy Approach to Enhanced Rabies Surveillance Prioritization. Viruses, 2021, 13, 1795.	1.5	10
12	SAFETY, IMMUNOGENICITY, AND EFFICACY OF INTRAMUSCULAR AND ORAL DELIVERY OF ERA-G333 RECOMBINANT RABIES VIRUS VACCINE TO BIG BROWN BATS (EPTESICUS FUSCUS). Journal of Wildlife Diseases, 2020, 56, 620.	0.3	6
13	Evaluation of species identification and rabies virus characterization among bat rabies cases in the United States. Journal of the American Veterinary Medical Association, 2020, 256, 77-84.	0.2	21
14	Contextualizing bats as viral reservoirs. Science, 2020, 370, 172-173.	6.0	24
15	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	2.1	127
16	Bat rabies. , 2020, , 231-276.		12
17	Rabies control in wild carnivores. , 2020, , 605-654.		9
18	Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus. Journal of Animal Ecology, 2020, 89, 1375-1386.	1.3	28

#	Article	IF	CITATIONS
19	Home Range Estimates for Small Indian Mongooses (Urva auropunctata) in Southwestern Puerto Rico. Caribbean Journal of Science, 2020, 50, 225.	0.2	8
20	Immunogenicity of Ontario Rabies Vaccine for Small Indian Mongooses (Herpestes auropunctatus). Journal of Wildlife Diseases, 2020, 56, 224.	0.3	12
21	Placebo Oral Rabies Vaccine Bait Uptake by Small Indian Mongooses (Herpestes auropunctatus) in Southwestern Puerto Rico. Journal of Wildlife Diseases, 2020, 56, 452.	0.3	12
22	Immunogenicity of Ontario Rabies Vaccine for Small Indian Mongooses (). Journal of Wildlife Diseases, 2020, 56, 224-228.	0.3	3
23	Placebo Oral Rabies Vaccine Bait Uptake by Small Indian Mongooses () in Southwestern Puerto Rico. Journal of Wildlife Diseases, 2020, 56, 452-456.	0.3	2
24	Not all surveillance data are created equalâ€"A multiâ€method dynamic occupancy approach to determine rabies elimination from wildlife. Journal of Applied Ecology, 2019, 56, 2551-2561.	1.9	19
25	Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation. Viruses, 2019, 11, 1006.	1.5	15
26	Discovery and Characterization of Bukakata orbivirus (Reoviridae:Orbivirus), a Novel Virus from a Ugandan Bat. Viruses, 2019, 11, 209.	1,5	17
27	Spatial ecology of urban striped skunks (Mephitis mephitis) in the Northern Great Plains: a framework for future oral rabies vaccination programs. Urban Ecosystems, 2019, 22, 539-552.	1.1	6
28	RACCOON (PROCYON LOTOR) RESPONSE TO ONTARIO RABIES VACCINE BAITS (ONRAB) IN ST. LAWRENCE COUNTY, NEW YORK, USA. Journal of Wildlife Diseases, 2019, 55, 645.	0.3	8
29	Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (Herpestes) Tj ETQq1 1 0.784314 rgBT Visualized Experiments, 2019, , .	Overlock 10 0.2	Tf 50 347 T
30	Volatile metabolomic signatures of rabies immunization in two mesocarnivore species. PLoS Neglected Tropical Diseases, 2019, 13, e0007911.	1.3	4
31	EFFECT OF HIGH-DENSITY ORAL RABIES VACCINE BAITING ON RABIES VIRUS NEUTRALIZING ANTIBODY RESPONSE IN RACCOONS (PROCYON LOTOR). Journal of Wildlife Diseases, 2019, 55, 399.	0.3	11
32	Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170089.	1.8	68
33	Raccoon (Procyon lotor) biomarker and rabies antibody response to varying oral rabies vaccine bait densities in northwestern Pennsylvania. Heliyon, 2018, 4, e00754.	1.4	7
34	FIELD TRIALS OF ONTARIO RABIES VACCINE BAIT IN THE NORTHEASTERN USA, 2012–14. Journal of Wildlife Diseases, 2018, 54, 790.	0.3	21
35	Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecology Letters, 2017, 20, 275-292.	3.0	50
36	Exposure to Lyssaviruses in Bats of the Democratic Republic of the Congo. Journal of Wildlife Diseases, 2017, 53, 408-410.	0.3	8

#	Article	IF	CITATIONS
37	Ecological Potential for Rabies Virus Transmission via Scavenging of Dead Bats by Mesocarnivores. Journal of Wildlife Diseases, 2017, 53, 382-385.	0.3	18
38	Adaptation of the Aesop's Fable paradigm for use with raccoons (Procyon lotor): considerations for future application in non-avian and non-primate species. Animal Cognition, 2017, 20, 1147-1152.	0.9	19
39	Den use and heterothermy during winter in free-living, suburban striped skunks. Journal of Mammalogy, 2017, 98, 867-873.	0.6	10
40	Comparison of a Micro-Neutralization Test with the Rapid Fluorescent Focus Inhibition Test for Measuring Rabies Virus Neutralizing Antibodies. Tropical Medicine and Infectious Disease, 2017, 2, 24.	0.9	18
41	Diversity and phylogenetic relationships among Bartonella strains from Thai bats. PLoS ONE, 2017, 12, e0181696.	1.1	30
42	Management and modeling approaches for controlling raccoon rabies: The road to elimination. PLoS Neglected Tropical Diseases, 2017, 11, e0005249.	1.3	51
43	Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public. PLoS Neglected Tropical Diseases, 2017, 11, e0005822.	1.3	17
44	<i>BARTONELLA ROCHALIMAE</i> AND <i>B. VINSONII</i> SUBSP. <i>BERKHOFFII</i> IN WILD CARNIVORES FROM COLORADO, USA. Journal of Wildlife Diseases, 2016, 52, 844-849.	0.3	40
45	Bait flavor preference and immunogenicity of ONRAB baits in domestic dogs on the Navajo Nation, Arizona. Journal of Veterinary Behavior: Clinical Applications and Research, 2016, 15, 20-24.	0.5	7
46	Network analysis of hostâ€"virus communities in bats and rodents reveals determinants of crossâ€species transmission. Ecology Letters, 2015, 18, 1153-1162.	3.0	120
47	Knowledge, attitudes and practices regarding rabies and exposure to bats in two rural communities in Guatemala. BMC Research Notes, 2015, 8, 955.	0.6	27
48	RABIES SURVEILLANCE AMONG BATS IN TENNESSEE, USA, 1996–2010. Journal of Wildlife Diseases, 2015, 51, 821-832.	0.3	6
49	Exposure to Rabies in Small Indian Mongooses (<i>Herpestes auropunctatus</i>) from Two Regions in Puerto Rico. Journal of Wildlife Diseases, 2015, 51, 896-900.	0.3	24
50	Bat Rabies in Guatemala. PLoS Neglected Tropical Diseases, 2014, 8, e3070.	1.3	21
51	Isolation and molecular characterization of Fikirini rhabdovirus, a novel virus from a Kenyan bat. Journal of General Virology, 2013, 94, 2393-2398.	1.3	24
52	A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122753.	1.2	508
53	Discovery of diverse polyomaviruses in bats and the evolutionary history of the Polyomaviridae. Journal of General Virology, 2013, 94, 738-748.	1.3	56
54	Evidence of Rabies Virus Exposure among Humans in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2012, 87, 206-215.	0.6	110

#	Article	IF	CITATIONS
55	Trends in National Surveillance Data for Bat Rabies in the United States: 2001–2009. Vector-Borne and Zoonotic Diseases, 2012, 12, 666-673.	0.6	42
56	A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4269-4274.	3.3	899
57	A perspective on lyssavirus emergence and perpetuation. Current Opinion in Virology, 2011, 1, 662-670.	2.6	86
58	Bartonella spp. in Bats, Guatemala. Emerging Infectious Diseases, 2011, 17, 1269-1272.	2.0	77
59	A tale of two genomes: contrasting patterns of phylogeographic structure in a widely distributed bat. Molecular Ecology, 2011, 20, 357-375.	2.0	66
60	RABIES PREVALENCE IN MIGRATORY TREE-BATS IN ALBERTA AND THE INFLUENCE OF ROOSTING ECOLOGY AND SAMPLING METHOD ON REPORTED PREVALENCE OF RABIES IN BATS. Journal of Wildlife Diseases, 2011, 47, 64-77.	0.3	27
61	Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 1155-1164.	0.7	35
62	Variation in Physiological Stress between Bridge- and Cave-Roosting Brazilian Free-Tailed Bats. Conservation Biology, 2010, 25, no-no.	2.4	20
63	Ecology of Rabies Virus Exposure in Colonies of Brazilian Free-Tailed Bats (<i>Tadarida) Tj ETQq1 1 0.784314 rgBT 10, 165-175.</i>	Overlock 0.6	10 Tf 50 4.
64	Host Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in Bats. Science, 2010, 329, 676-679.	6.0	407
65	Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 315-23.	0.7	71
66	EXPERIMENTAL RABIES VIRUS INFECTION OF BIG BROWN BATS (EPTESICUS FUSCUS). Journal of Wildlife Diseases, 2008, 44, 612-621.	0.3	51
67	Integrative models of bat rabies immunology, epizootiology and disease demography. Journal of Theoretical Biology, 2007, 245, 498-509.	0.8	34

Extremely variable di- and tetranucleotide microsatellite loci in Brazilian free-tailed bats (Tadarida) Tj ETQq0 0 0 rgBI./Overlock 10 Tf 50