Abdel A Hannachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345972/publications.pdf

Version: 2024-02-01

56 2,876 22 papers citations h-index

67 67 67 3524 all docs docs citations times ranked citing authors

49

g-index

#	Article	IF	CITATIONS
1	Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 2007, 27, 1119-1152.	1.5	885
2	Variability of the North Atlantic eddy-driven jet stream. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 856-868.	1.0	402
3	Observed Trends and Teleconnections of the Siberian High: A Recently Declining Center of Action. Journal of Climate, 2005, 18, 1411-1422.	1.2	258
4	On the existence of multiple climate regimes. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 583-605.	1.0	128
5	A Regime View of the North Atlantic Oscillation and Its Response to Anthropogenic Forcing. Journal of Climate, 2010, 23, 1291-1307.	1.2	110
6	Lowâ€frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Reviews of Geophysics, 2017, 55, 199-234.	9.0	105
7	The Variability of Seasonality. Journal of Climate, 2005, 18, 71-88.	1.2	103
8	Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dynamics, 2003, 20, 241-256.	1.7	68
9	In search of simple structures in climate: simplifying EOFs. International Journal of Climatology, 2006, 26, 7-28.	1.5	67
10	Pattern hunting in climate: a new method for finding trends in gridded climate data. International Journal of Climatology, 2007, 27, 1-15.	1,5	66
11	Atmospheric multiple equilibria and non-Gaussian behaviour in model simulations. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 939-958.	1.0	49
12	Weather Regimes in the Pacific from a GCM. Journals of the Atmospheric Sciences, 1995, 52, 2444-2462.	0.6	47
13	Independent Component Analysis of Climate Data: A New Look at EOF Rotation. Journal of Climate, 2009, 22, 2797-2812.	1.2	47
14	Low-Frequency Variability in a GCM: Three-Dimensional Flow Regimes and Their Dynamics. Journal of Climate, 1997, 10, 1357-1379.	1,2	39
15	High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 26728.	0.8	39
16	The North Atlantic jet stream: a look at preferred positions, paths and transitions. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 862-877.	1.0	35
17	Tropospheric Planetary Wave Dynamics and Mixture Modeling: Two Preferred Regimes and a Regime Shift. Journals of the Atmospheric Sciences, 2007, 64, 3521-3541.	0.6	31
18	On the Use of Geometric Moments to Examine the Continuum of Sudden Stratospheric Warmings. Journals of the Atmospheric Sciences, 2011, 68, 657-674.	0.6	31

#	Article	IF	CITATIONS
19	Is there regime behavior in monsoon convection in the late 20th century?. Geophysical Research Letters, 2010, 37, .	1.5	27
20	Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Climate Dynamics, 2013, 41, 995-1007.	1.7	26
21	Perspectives of Non-Gaussianity in Atmospheric Synoptic and Low-Frequency Variability. Journal of Climate, 2015, 28, 5091-5114.	1.2	26
22	Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5. Climate Dynamics, 2018, 51, 235-247.	1.7	24
23	On the Origin of Planetary-Scale Extratropical Winter Circulation Regimes. Journals of the Atmospheric Sciences, 2010, 67, 1382-1401.	0.6	23
24	Is the Indian Ocean SST variability a homogeneous diffusion process?. Climate Dynamics, 2009, 33, 535-547.	1.7	20
25	Interannual variability of Mediterranean evaporation and its relation to regional climate. Climate Dynamics, 2012, 38, 495-512.	1.7	20
26	Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection. Geophysical Research Letters, 2013, 40, 1653-1658.	1.5	20
27	Intermittency, autoregression and censoring: a first-order AR model for daily precipitation. Meteorological Applications, 2014, 21, 384-397.	0.9	17
28	Archetypal Analysis: Mining Weather and Climate Extremes. Journal of Climate, 2017, 30, 6927-6944.	1.2	15
29	20th century intraseasonal Asian monsoon dynamics viewed from Isomap. Nonlinear Processes in Geophysics, 2013, 20, 725-741.	0.6	13
30	Weather Regimes in the Pacific from a GCM. Part II: Dynamics and Stability. Journals of the Atmospheric Sciences, 1997, 54, 1334-1348.	0.6	13
31	On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins. Journal of Geophysical Research D: Atmospheres, 2017, 122, 802-822.	1.2	12
32	On the Nonlinearity of Winter Northern Hemisphere Atmospheric Variability. Journals of the Atmospheric Sciences, 2019, 76, 333-356.	0.6	11
33	Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality. Complexity, 2017, 2017, 1-23.	0.9	10
34	Predictability and Non-Gaussian Characteristics of the North Atlantic Oscillation. Journal of Climate, 2018, 31, 537-554.	1.2	10
35	Recent Change—Atmosphere. Regional Climate Studies, 2016, , 55-84.	1.2	10
36	Interdecadal changes in the links between Mediterranean evaporation and regional atmospheric dynamics during extended cold season. International Journal of Climatology, 2017, 37, 1322-1340.	1.5	9

#	Article	IF	CITATIONS
37	Preferred structures in largeâ€scale circulation and the effect of doubling greenhouse gas concentration in HadCM3. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 469-480.	1.0	8
38	Tellus A and B with Stockholm University Press. Tellus, Series A: Dynamic Meteorology and Oceanography, 2021, 73, 1-1.	0.8	8
39	A New Set of Orthogonal Patterns in Weather and Climate: Optimally Interpolated Patterns. Journal of Climate, 2008, 21, 6724-6738.	1.2	7
40	Tellus A and B with Stockholm University Press. Tellus, Series B: Chemical and Physical Meteorology, 2021, 73, 1-1.	0.8	7
41	Regularised empirical orthogonal functions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2016, 68, 31723.	0.8	6
42	Bimodality of hemispheric winter atmospheric variability via average flow tendencies and kernel EOFs. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1633847.	0.8	5
43	Bispectral analysis of nonlinear interaction, predictability and stochastic modelling with application to ENSO. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1866393.	0.8	4
44	River Nile discharge, the Pacific Ocean and world climate – a seasonal synchronization perspective. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1947551.	0.8	4
45	Nonlinear time series models for the North Atlantic Oscillation. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6, 141-157.	0.6	4
46	Common EOFs: a tool for multi-model comparison and evaluation. Climate Dynamics, 2023, 60, 1689-1703.	1.7	2
47	Characterisation of rainfall events in northern Tunisia using self-organising maps. Journal of Hydrology: Regional Studies, 2022, 42, 101159.	1.0	2
48	Troposphere-Stratosphere Dynamical Coupling in Regard to the North Atlantic Eddy-Driven Jet Variability. Journal of the Meteorological Society of Japan, 2019, 97, 657-671.	0.7	1
49	Empirical Orthogonal Functions. Springer Atmospheric Sciences, 2021, , 31-69.	0.4	1
50	Extended EOFs and SSA. Springer Atmospheric Sciences, 2021, , 145-170.	0.4	0
51	Scientific methods, media coverage, public awareness and climate change. Tellus, Series A: Dynamic Meteorology and Oceanography, 2021, 73, 1-2.	0.8	0
52	Principal Coordinates or Multidimensional Scaling. Springer Atmospheric Sciences, 2021, , 201-217.	0.4	0
53	Functional and Regularised EOFs. Springer Atmospheric Sciences, 2021, , 319-335.	0.4	0
54	Projection Pursuit. Springer Atmospheric Sciences, 2021, , 241-264.	0.4	0

#	Article	IF	CITATIONS
55	Methods for Coupled Patterns. Springer Atmospheric Sciences, 2021, , 337-366.	0.4	0
56	Summertime variability of Mediterranean evaporation: competing impacts from the mid latitudes teleconnections and the South Asian monsoon. Theoretical and Applied Climatology, 2021, 144, 779-791.	1.3	0