
Venugopal Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biology, 2015, 13, e1002198.	2.6	291
2	The long view: 40 years of avian leukosis research. Avian Pathology, 2012, 41, 11-19.	0.8	243
3	A robust system for RNA interference in the chicken using a modified microRNA operon. Developmental Biology, 2006, 294, 554-563.	0.9	192
4	Evolution of Marek's disease – A paradigm for incessant race between the pathogen and the host. Veterinary Journal, 2005, 170, 175-183.	0.6	159
5	Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas. PLoS Pathogens, 2011, 7, e1001305.	2.1	157
6	Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leukosis virus. Virus Research, 1998, 54, 87-98.	1.1	155
7	A Functional MicroRNA-155 Ortholog Encoded by the Oncogenic Marek's Disease Virus. Journal of Virology, 2009, 83, 489-492.	1.5	135
8	MicroRNA Profile of Marek's Disease Virus-Transformed T-Cell Line MSB-1: Predominance of Virus-Encoded MicroRNAs. Journal of Virology, 2008, 82, 4007-4015.	1.5	130
9	Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the $5\hat{a}\in^2$ and $3\hat{a}\in^2$ -UTRs. Virus Research, 1997, 49, 27-39.	1.1	124
10	Virus-encoded microRNAs: novel regulators of gene expression. Trends in Microbiology, 2006, 14, 169-175.	3.5	121
11	Absolute quantitation of Marek's disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. Journal of Virological Methods, 2005, 123, 53-64.	1.0	118
12	Oncogenicity of Virulent Marek's Disease Virus Cloned as Bacterial Artificial Chromosomes. Journal of Virology, 2004, 78, 13376-13380.	1.5	117
13	A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. Journal of Experimental Medicine, 2006, 203, 1307-1317.	4.2	112
14	Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding. ELife, 2015, 4, e05345.	2.8	107
15	Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek's disease virus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1687-1692.	3.3	105
16	Horizontal Transmission of Marek's Disease Virus Requires U S 2, the U L 13 Protein Kinase, and gC. Journal of Virology, 2007, 81, 10575-10587.	1.5	105
17	Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Research in Veterinary Science, 1999, 67, 113-119.	0.9	103
18	Attenuation of Marek's Disease Virus by Deletion of Open Reading Frame RLORF4 but Not RLORF5a. Journal of Virology, 2005, 79, 11647-11659.	1.5	101

#	Article	IF	CITATIONS
19	Global distributions and strain diversity of avian infectious bronchitis virus: a review. Animal Health Research Reviews, 2017, 18, 70-83.	1.4	100
20	Marek's Disease Virus Type 2 (MDV-2)-Encoded MicroRNAs Show No Sequence Conservation with Those Encoded by MDV-1. Journal of Virology, 2007, 81, 7164-7170.	1.5	99
21	Use of Marek's disease vaccines: could they be driving the virus to increasing virulence?. Expert Review of Vaccines, 2005, 4, 77-88.	2.0	91
22	Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus. Journal of General Virology, 2007, 88, 1080-1096.	1.3	86
23	Replication-Competent Bacterial Artificial Chromosomes of Marek's Disease Virus: Novel Tools for Generation of Molecularly Defined Herpesvirus Vaccines. Journal of Virology, 2003, 77, 8712-8718.	1.5	84
24	Infection of macrophages by a lymphotropic herpesvirus: a new tropism for Marek's disease virus. Journal of General Virology, 2003, 84, 2635-2645.	1.3	82
25	Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease. Journal of General Virology, 2006, 87, 769-776.	1.3	82
26	Immunisation with DNA polynucleotides protects mice against lethal challenge with St. Louis encephalitis virus. Archives of Virology, 1996, 141, 743-749.	0.9	80
27	Systems Analysis of Immune Responses in Marek's Disease Virus-Infected Chickens Identifies a Gene Involved in Susceptibility and Highlights a Possible Novel Pathogenicity Mechanism. Journal of Virology, 2011, 85, 11146-11158.	1.5	78
28	The long view: 40 years of Marek's disease research and <i>Avian Pathology</i> . Avian Pathology, 2012, 41, 3-9.	0.8	76
29	Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 (subgroup) Tj ETQq1	1 0.78432 1.3	14 ₇₉ BT /Ove
30	Vaccinal control of Marek's disease: Current challenges, and future strategies to maximize protection. Veterinary Immunology and Immunopathology, 2006, 112, 78-86.	0.5	68
31	vLIP, a Viral Lipase Homologue, Is a Virulence Factor of Marek's Disease Virus. Journal of Virology, 2005, 79, 6984-6996.	1.5	64
32	Sequencing and antigenic studies of a Norwegian virus isolated from encephalomyelitic sheep confirm the existence of louping ill virus outside Great Britain and Ireland. Journal of General Virology, 1993, 74, 109-114.	1.3	63
33	Replication kinetics of Marek's disease vaccine virus in feathers and lymphoid tissues using PCR and virus isolation. Journal of General Virology, 2005, 86, 2989-2998.	1.3	61
34	The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. Journal of General Virology, 2002, 83, 2553-2561.	1.3	61
35	Nucleotide sequence of the envelope glycoprotein of negishi virus shows very close homology to louping III virus. Virology, 1992, 190, 515-521.	1.1	59
36	Differential expression of microRNAs in Marek's disease virus-transformed T-lymphoma cell lines. Journal of General Virology, 2009, 90, 1551-1559.	1.3	59

#	Article	IF	CITATIONS
37	Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek's disease. Vaccine, 2011, 29, 8257-8266.	1.7	58
38	Turkey and chicken interferon-γ, which share high sequence identity, are biologically cross-reactive. Developmental and Comparative Immunology, 2001, 25, 69-82.	1.0	55
39	Functional evaluation of the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a field strain of Marek's disease virus. Virology, 2010, 397, 270-276.	1.1	54
40	Towards a new generation of flavivirus vaccines. Vaccine, 1994, 12, 966-975.	1.7	53
41	MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1. Journal of General Virology, 2009, 90, 1164-1171.	1.3	53
42	Recent advances in viral vectors in veterinary vaccinology. Current Opinion in Virology, 2018, 29, 1-7.	2.6	53
43	Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses. Virus Research, 1993, 27, 201-209.	1.1	51
44	Homodimerization of the Meq Viral Oncoprotein Is Necessary for Induction of T-Cell Lymphoma by Marek's Disease Virus. Journal of Virology, 2009, 83, 11142-11151.	1.5	49
45	Latency and Tumorigenesis in Marek's Disease. Avian Diseases, 2013, 57, 360-365.	0.4	48
46	Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek's disease virus. Journal of Virological Methods, 2016, 233, 23-36.	1.0	48
47	A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine, 2018, 36, 716-722.	1.7	48
48	Avian Endogenous Retrovirus EAV-HP Shares Regions of Identity with Avian Leukosis Virus Subgroup J and the Avian Retrotransposon ART-CH. Journal of Virology, 2000, 74, 1296-1306.	1.5	47
49	Comparative sequence analysis of a highly oncogenic but horizontal spread-defective clone of Marek's disease virus. Virus Genes, 2007, 35, 753-766.	0.7	46
50	Analysis of part of the chicken Rfp-Y region reveals two novel lectin genes, the first complete genomic sequence of a classÂl α-chain gene, a truncated classÂll β-chain gene, and a large CR1 repeat. Immunogenetics, 2003, 55, 100-108.	1.2	45
51	E (XSR) element contributes to the oncogenicity of Avian leukosis virus (subgroup J). Journal of General Virology, 2006, 87, 2685-2692.	1.3	45
52	Marek's disease: an update on oncogenic mechanisms and control. Research in Veterinary Science, 2000, 69, 17-23.	0.9	43
53	Role of Virus-Encoded microRNAs in Avian Viral Diseases. Viruses, 2014, 6, 1379-1394.	1.5	43
54	Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Scientific Reports, 2018, 8, 6794.	1.6	43

#	Article	IF	CITATIONS
55	Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window. Journal of General Virology, 2016, 97, 2516-2527.	1.3	42
56	An Avian Retrovirus Uses Canonical Expression and Processing Mechanisms To Generate Viral MicroRNA. Journal of Virology, 2014, 88, 2-9.	1.5	40
57	Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poultry Science, 2016, 95, 1905-1911.	1.5	40
58	Retrovirus-induced oncogenesis and safety of retroviral vectors. Current Opinion in Molecular Therapeutics, 2008, 10, 431-8.	2.8	40
59	Acutely Transforming Avian Leukosis Virus Subgroup J Strain 966: Defective Genome Encodes a 72-Kilodalton Gag-Myc Fusion Protein. Journal of Virology, 2001, 75, 4219-4225.	1.5	38
60	Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms. Avian Diseases, 2017, 61, 153.	0.4	37
61	Recombinant env-gp85 of HPRS-103 (Subgroup J) Avian Leukosis Virus: Antigenic Characteristics and Usefulness as a Diagnostic Reagent. Avian Diseases, 1997, 41, 283.	0.4	36
62	Epigenetic Regulation of the Latency-Associated Region of Marek's Disease Virus in Tumor-Derived T-Cell Lines and Primary Lymphoma. Journal of Virology, 2012, 86, 1683-1695.	1.5	36
63	Clonal Structure of Rapid-Onset MDV-Driven CD4+ Lymphomas and Responding CD8+ T Cells. PLoS Pathogens, 2011, 7, e1001337.	2.1	34
64	Self-excision of the BAC sequences from the recombinant Marek's disease virus genome increases replication and pathogenicity. Virology Journal, 2008, 5, 19.	1.4	33
65	MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell International, 2010, 10, 15.	1.8	33
66	Analysis of the structural protein gene sequence shows Kyasanur Forest disease virus as a distinct member in the tick-borne encephalitis virus serocomplex. Journal of General Virology, 1994, 75, 227-232.	1.3	32
67	Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). Developmental and Comparative Immunology, 2017, 77, 340-349.	1.0	32
68	Correlation of Marek's disease herpesvirus vaccine virus genome load in feather tips with protection, using an experimental challenge model. Avian Pathology, 2007, 36, 467-474.	0.8	31
69	Analysis of the expression profiles of Marek's disease virus-encoded microRNAs by real-time quantitative PCR. Journal of Virological Methods, 2008, 149, 201-208.	1.0	30
70	Cloning of Gallid herpesvirus 3 (Marek's disease virus serotype-2) genome as infectious bacterial artificial chromosomes for analysis of viral gene functions. Journal of Virological Methods, 2009, 158, 11-17.	1.0	30
71	Generation of A Triple Insert Live Avian Herpesvirus Vectored Vaccine Using CRISPR/Cas9-Based Gene Editing. Vaccines, 2020, 8, 97.	2.1	30
72	Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine, 2009. 27. 298-306.	1.7	29

#	Article	IF	CITATIONS
73	Chicken IFN Kappa: A Novel Cytokine with Antiviral Activities. Scientific Reports, 2017, 7, 2719.	1.6	29
74	Marek's Disease Virus-Encoded MicroRNA 155 Ortholog Critical for the Induction of Lymphomas Is Not Essential for the Proliferation of Transformed Cell Lines. Journal of Virology, 2019, 93, .	1.5	29
75	Assessing the Roles of Endogenous Retrovirus EAV-HP in Avian Leukosis Virus Subgroup J Emergence and Tolerance. Journal of Virology, 2004, 78, 10525-10535.	1.5	28
76	Novel MicroRNAs (miRNAs) Encoded by Herpesvirus of Turkeys: Evidence of miRNA Evolution by Duplication. Journal of Virology, 2009, 83, 6969-6973.	1.5	28
77	A BAC clone of MDV strain GX0101 with REV-LTR integration retained its pathogenicity. Science Bulletin, 2009, 54, 2641-2647.	4.3	28
78	Differential quantification of cloned CVI988 vaccine strain and virulent RB-1B strain of Marek's disease viruses in chicken tissues, using real-time PCR. Research in Veterinary Science, 2011, 91, 167-174.	0.9	28
79	Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage. Cellular Physiology and Biochemistry, 2018, 47, 1655-1666.	1.1	28
80	A Single Chain Antibody Fragment Expressed in Bacteria Neutralizes Tick-Borne Flaviviruses. Virology, 1994, 200, 21-28.	1.1	26
81	Marek's disease virus oncogenicity. , 2004, , 32-48.		26
82	Spotlight on avian pathology: Marek's disease. Avian Pathology, 2018, 47, 440-442.	0.8	26
83	Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus. Viruses, 2019, 11, 527.	1.5	26
84	Interaction of Marek's disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells. Journal of General Virology, 2009, 90, 2201-2208.	1.3	25
85	Marek's disease, candidiasis and megabacteriosis in a flock of chickens (<i>Gallus gallus) Tj ETQq1 1 0.784314</i>	rgBT /Over 0.2	lock 10 Tf 50
86	Relationship Between Levels of Very Virulent MDV in Poultry Dust and in Feather Tips from Vaccinated Chickens. Avian Diseases, 2013, 57, 440-447.	0.4	24
87	Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development. Viruses, 2021, 13, 779.	1.5	24
88	Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). Journal of General Virology, 2017, 98, 2918-2930.	1.3	24
89	Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. Journal of General Virology, 2011, 92, 1500-1507.	1.3	22
90	Application of CRISPR/Cas9 Gene Editing System on MDV-1 Genome for the Study of Gene Function. Viruses, 2018, 10, 279.	1.5	22

#	Article	IF	CITATIONS
91	Tropism of subgroup J avian leukosis virus as detected byin situhybridization. Avian Pathology, 1999, 28, 163-169.	0.8	20
92	Monocytosis is associated with the onset of leukocyte and viral infiltration of the brain inchickens infected with the very virulent Marek's disease virus strain C 12/130. Avian Pathology, 2003, 32, 183-191.	0.8	20
93	Molecular characterization of Marek's disease virus in a poultry layer farm from Colombia. Poultry Science, 2017, 96, 1598-1608.	1.5	20
94	Identification of an Intercistronic Internal Ribosome Entry Site in a Marek's Disease Virus Immediate-Early Gene. Journal of Virology, 2009, 83, 5846-5853.	1.5	19
95	Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transboundary and Emerging Diseases, 2018, 65, 1851-1862.	1.3	19
96	Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens. Viruses, 2018, 10, 173.	1.5	19
97	Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line. Frontiers in Genome Editing, 2020, 2, 3.	2.7	19
98	Molecular pathogenesis of Marek's disease—recent developments. Avian Pathology, 1995, 24, 597-609.	0.8	18
99	Targeted Editing of the pp38 Gene in Marek's Disease Virus-Transformed Cell Lines Using CRISPR/Cas9 System. Viruses, 2019, 11, 391.	1.5	18
100	Marek's disease virus infection of phagocytes: a de novo in vitro infection model. Journal of General Virology, 2017, 98, 1080-1088.	1.3	18
101	A direct comparison of strategies for combinatorial RNA interference. BMC Molecular Biology, 2010, 11, 77.	3.0	17
102	Comparative efficacy of BAC-derived recombinant SB-1 vaccine and the parent wild type strain in preventing replication, shedding and disease induced by virulent Marek's disease virus. Research in Veterinary Science, 2010, 89, 140-145.	0.9	17
103	Novel microRNAs encoded by duck enteritis virus. Journal of General Virology, 2012, 93, 1530-1536.	1.3	17
104	Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Non-coding RNA, 2019, 5, 24.	1.3	17
105	Isolation of acutely transforming subgroup J avian leukosis viruses that induce erythroblastosis and myelocytomatosis. Avian Pathology, 2000, 29, 327-332.	0.8	16
106	Outbreak of Marek's disease in a flock of turkeys in Scotland. Veterinary Record, 2002, 150, 277-279.	0.2	16
107	Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts. Veterinary Research, 2017, 48, 48.	1.1	16
108	Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System. Viruses, 2020, 12, 466.	1.5	16

#	Article	IF	CITATIONS
109	An Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Marek's Disease Virus-Specific Antibodies and its Application in an Experimental Vaccine Trial. Zoonoses and Public Health, 2004, 51, 61-67.	1.4	15
110	17D yellow fever vaccine virus envelope protein expressed by recombinant baculovirus is antigenically indistinguishable from authentic viral protein. Journal of General Virology, 1991, 72, 1451-1454.	1.3	14
111	Immunity to St. Louis encephalitis virus by sequential immunization with recombinant vaccinia and baculovirus derived PrM/E proteins. Vaccine, 1995, 13, 1000-1005.	1.7	14
112	The 5′ Leader of the mRNA Encoding the Marek's Disease Virus Serotype 1 pp14 Protein Contains an Intronic Internal Ribosome Entry Site with Allosteric Properties. Journal of Virology, 2009, 83, 12769-12778.	1.5	14
113	MicroRNA expression profiles in avian haemopoietic cells. Frontiers in Genetics, 2013, 4, 153.	1.1	14
114	Synergistic Viral Replication of Marek's Disease Virus and Avian Leukosis Virus Subgroup J is Responsible for the Enhanced Pathogenicity in the Superinfection of Chickens. Viruses, 2018, 10, 271.	1.5	14
115	Infectivity of wild bird-origin avian paramyxovirus serotype 1 and vaccine effectiveness in chickens. Journal of General Virology, 2016, 97, 3161-3173.	1.3	13
116	Segregation of EAV-HP Ancient Endogenous Retroviruses within the Chicken Population. Journal of Virology, 2001, 75, 11935-11938.	1.5	12
117	Poly(A) Binding Protein 1 Enhances Cap-Independent Translation Initiation of Neurovirulence Factor from Avian Herpesvirus. PLoS ONE, 2014, 9, e114466.	1.1	12
118	Prototype endogenous avian retroviruses of the genus Gallus. Journal of General Virology, 2014, 95, 2060-2070.	1.3	12
119	NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology, 2018, 518, 126-135.	1.1	12
120	An Ex Vivo Chicken Primary Bursal-cell Culture Model to Study Infectious Bursal Disease Virus Pathogenesis. Journal of Visualized Experiments, 2018, , .	0.2	12
121	Marek's disease virus undergoes complete morphogenesis after reactivation in a T-lymphoblastoid cell line transformed by recombinant fluorescent marker virus. Journal of General Virology, 2016, 97, 480-486.	1.3	12
122	Intact EAV-HP Endogenous Retrovirus in Sonnerat's Jungle Fowl. Journal of Virology, 2001, 75, 2029-2032.	1.5	11
123	Callid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination. Npj Vaccines, 2018, 3, 21.	2.9	11
124	Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation. Journal of General Virology, 2017, 98, 810-820.	1.3	11
125	Recombinant vaccinia virus expressing PrM and E glycoproteins of louping ill virus: induction of partial homologous and heterologous protection in mice. Research in Veterinary Science, 1994, 57, 188-193.	0.9	10
126	Three Rs Approaches in the Production and Quality Control of Avian Vaccines. ATLA Alternatives To Laboratory Animals, 2000, 28, 241-258.	0.7	10

#	Article	IF	CITATIONS
127	Antiviral effect of lithium chloride on replication of avian leukosis virus subgroup J in cell culture. Archives of Virology, 2018, 163, 987-995.	0.9	10
128	MiR-125b Suppression Inhibits Apoptosis and Negatively Regulates Sema4D in Avian Leukosis Virus-Transformed Cells. Viruses, 2019, 11, 728.	1.5	10
129	A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms, 2021, 9, 1066.	1.6	10
130	Differentially expressed genes during spontaneous lytic switch of Marek's disease virus in lymphoblastoid cell lines determined by global gene expression profiling. Journal of General Virology, 2017, 98, 779-790.	1.3	10
131	Bursal transcriptome profiling of different inbred chicken lines reveals key differentially expressed genes at 3 days post-infection with very virulent infectious bursal disease virus. Journal of General Virology, 2018, 99, 21-35.	1.3	10
132	Avian leukosis virus subgroup J induces VEGF expression <i>via</i> NF-κB/PI3K-dependent IL-6 production. Oncotarget, 2016, 7, 80275-80287.	0.8	10
133	Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway. Viruses, 2021, 13, 1968.	1.5	10
134	Subgroup J avian leukosis virus infection in turkeys: Induction of rapid onset tumours by acutely transforming virus strain 966. Avian Pathology, 2000, 29, 319-325.	0.8	9
135	Generating Recombinant Avian Herpesvirus Vectors with CRISPR/Cas9 Gene Editing. Journal of Visualized Experiments, 2019, , .	0.2	9
136	Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J. Journal of Animal Science and Biotechnology, 2019, 10, 23.	2.1	9
137	Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses, 2020, 12, 1249.	1.5	9
138	Early pathogenesis during infectious bursal disease in susceptible chickens is associated with changes in B cell genomic methylation and loss of genome integrity. Developmental and Comparative Immunology, 2017, 73, 169-174.	1.0	8
139	Protection against fowl cholera in ducks immunized with a combination vaccine containing live attenuated duck enteritis virus and recombinant outer membrane protein H of Pasteurella multocida. Avian Pathology, 2020, 49, 221-229.	0.8	8
140	Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR Journal, 2021, 4, 477-490.	1.4	8
141	Identification of a Neurovirulence Factor from Marek's Disease Virus. Avian Diseases, 2013, 57, 387-394.	0.4	7
142	Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses, 2020, 12, 1305.	1.5	7
143	Virus-encoded miR-155 ortholog in Marek's disease virus promotes cell proliferation via suppressing apoptosis by targeting tumor suppressor WWOX. Veterinary Microbiology, 2021, 252, 108919.	0.8	7
144	Development of an IgM capture assay for the diagnosis of B19 parvovirus infection using recombinant baculoviruses expressing VP1 or VP2 antigens. Clinical and Diagnostic Virology, 1995, 3, 181-190.	1.8	6

#	Article	IF	CITATIONS
145	Rapid identification of non-essential genes for in vitro replication of Marek's disease virus by random transposon mutagenesis. Journal of Virological Methods, 2006, 135, 288-291.	1.0	6
146	Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	6
147	Double-stranded RNA induces chicken T-cell lymphoma apoptosis by TRIF and NF-κB. Scientific Reports, 2017, 7, 7547.	1.6	6
148	Marek's Disease Virus (Gallid alphaherpesvirus 2)-Encoded miR-M2-5p Simultaneously Promotes Cell Proliferation and Suppresses Apoptosis Through RBM24 and MYOD1-Mediated Signaling Pathways. Frontiers in Microbiology, 2020, 11, 596422.	1.5	6
149	Pervasive Differential Splicing in Marek's Disease Virus Can Discriminate CVI-988 Vaccine Strain from RB-1B Very Virulent Strain in Chicken Embryonic Fibroblasts. Viruses, 2020, 12, 329.	1.5	6
150	Novel mutation of avian leukosis virus subgroup J from Tibetan chickens. Poultry Science, 2021, 100, 100931.	1.5	6
151	Marek's disease virus oncoprotein Meq physically interacts with the chicken infectious anemia virus-encoded apoptotic protein apoptin. Oncotarget, 2018, 9, 28910-28920.	0.8	6
152	Identification of a Novel Insertion Site HVT-005/006 for the Generation of Recombinant Turkey Herpesvirus Vector. Frontiers in Microbiology, 2022, 13, .	1.5	6
153	Prevention of Avian Retrovirus Infection in Chickens Using CRISPR-Cas9 Delivered by Marek's Disease Virus. Molecular Therapy - Nucleic Acids, 2020, 21, 343-353.	2.3	5
154	CRISPR-Mediated Gene Activation (CRISPRa) of pp38/pp24 Orchestrates Events Triggering Lytic Infection in Marek's Disease Virus-Transformed Cell Lines. Microorganisms, 2021, 9, 1681.	1.6	5
155	Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition. Journal of Virology, 2020, 94, .	1.5	5
156	Targeted Deletion of Glycoprotein B Gene by CRISPR/Cas9 Nuclease Inhibits <i>Gallid herpesvirus</i> Type 3 in Dually Infected Marek's Disease Virus-Transformed Lymphoblastoid Cell Line MSB-1. Journal of Virology, 2022, 96, jvi0202721.	1.5	5
157	Heterologous resistance to superinfection by louping ill virus persistently infected cell cultures. Archives of Virology, 1992, 125, 251-259.	0.9	4
158	Induction of lymphomas by inoculation of Marek's disease virus-derived lymphoblastoid cell lines: prevention by CVI988 vaccination. Avian Pathology, 2012, 41, 589-598.	0.8	4
159	Evaluation and Identification of Marek's Disease Virus BAC Clones as Standardized Reagents for Research. Avian Diseases, 2017, 61, 107-114.	0.4	4
160	Tick-borne flavivirus NS1 gene: identification of conserved peptides and antigenic analysis of recombinant louping ill virus NS1 protein. Virus Research, 1994, 31, 245-254.	1.1	3
161	Tumors of the Avian Immune System. , 2014, , 333-344.		3
162	Inhibition of v-rel-Induced Oncogenesis through microRNA Targeting. Viruses, 2018, 10, 242.	1.5	3

#	Article	IF	CITATIONS
163	Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. Journal of Virological Methods, 2018, 260, 88-97.	1.0	3
164	Mutagenesis of the Repeat Regions of Herpesviruses Cloned as Bacterial Artificial Chromosomes. Methods in Molecular Biology, 2010, 634, 53-74.	0.4	3
165	A Recombinant Turkey Herpesvirus Expressing the F Protein of Newcastle Disease Virus Genotype XII Generated by NHEJ-CRISPR/Cas9 and Cre-LoxP Systems Confers Protection against Genotype XII Challenge in Chickens. Viruses, 2022, 14, 793.	1.5	3
166	CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites. Vaccines, 2022, 10, 686.	2.1	3
167	Tumors of the avian immune system. , 2022, , 457-468.		2
168	TUMOURS OF THE AVIAN IMMUNE SYSTEM. , 2008, , 359-372.		1
169	A B-cell targeting virus disrupts potentially protective genomic methylation patterns in lymphoid tissue by increasing global 5-hydroxymethylcytosine levels. Veterinary Research, 2014, 45, 108.	1.1	1
170	Vaccine and oncogenic strains of gallid herpesvirus 2 contain specific subtype variations in the 5′ region of the latency-associated transcript that evolve in vitro and in vivo. Archives of Virology, 2015, 160, 161-171.	0.9	1
171	Role of Virus-Encoded microRNAs in Avian Viral Diseases. , 2020, , .		Ο
172	Hepatitis E Virus. , 2016, , 139-148.		0
173	V5 and GFP Tagging of Viral Gene pp38 of Marek's Disease Vaccine Strain CVI988 Using CRISPR/Cas9 Editing. Viruses, 2022, 14, 436.	1.5	Ο