
Mirela Damian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear reconfiguration of cube-style modular robots. Computational Geometry: Theory and Applications, 2009, 42, 652-663.	0.5	25
2	ï€/2-ANGLE YAO GRAPHS ARE SPANNERS. International Journal of Computational Geometry and Applications, 2012, 22, 61-82.	0.5	23
3	Local approximation schemes for topology control. , 2006, , .		21
4	Efficient reconfiguration of lattice-based modular robots. Computational Geometry: Theory and Applications, 2013, 46, 917-928.	0.5	18
5	Epsilon-Unfolding Orthogonal Polyhedra. Graphs and Combinatorics, 2007, 23, 179-194.	0.4	15
6	Efficient Many-To-Many Point Matching in One Dimension. Graphs and Combinatorics, 2007, 23, 169-178.	0.4	15
7	An O(n log n)-Time Algorithm for the Restriction Scaffold Assignment Problem. Journal of Computational Biology, 2006, 13, 979-989.	1.6	14
8	Switching to Directional Antennas with Constant Increase in Radius and Hop Distance. Lecture Notes in Computer Science, 2011, , 134-146.	1.3	14
9	Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. Algorithmica, 2021, 83, 1316-1351.	1.3	12
10	Unfolding Manhattan Towers. Computational Geometry: Theory and Applications, 2008, 40, 102-114.	0.5	11
11	APX-hardness of domination problems in circle graphs. Information Processing Letters, 2006, 97, 231-237.	0.6	10
12	Establishing strong connectivity using optimal radius half-disk antennas. Computational Geometry: Theory and Applications, 2013, 46, 328-339.	0.5	10
13	Coverage with k-transmitters in the presence of obstacles. Journal of Combinatorial Optimization, 2013, 25, 208-233.	1.3	9
14	SPANNING PROPERTIES OF GRAPHS INDUCED BY DIRECTIONAL ANTENNAS. Discrete Mathematics, Algorithms and Applications, 2013, 05, 1350008.	0.6	8
15	Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm. Graphs and Combinatorics, 2014, 30, 125-140.	0.4	8
16	Unfolding Genus-2 Orthogonal Polyhedra with Linear Refinement. Graphs and Combinatorics, 2017, 33, 1357-1379.	0.4	8
17	Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 2011, 29, 59-71.	1.9	7
18	Switching to Directional Antennas with Constant Increase in Radius and Hop Distance. Algorithmica, 2014, 69, 397-409.	1.3	7

MIRELA DAMIAN

#	Article	IF	CITATIONS
19	YAO GRAPHS SPAN THETA GRAPHS. Discrete Mathematics, Algorithms and Applications, 2012, 04, 1250024.	0.6	6
20	Realistic Reconfiguration of Crystalline (and Telecube) Robots. Springer Tracts in Advanced Robotics, 2009, , 433-447.	0.4	5
21	Improved bounds on the stretch factor of Y4. Computational Geometry: Theory and Applications, 2017, 62, 14-24.	0.5	3
22	Grid Vertex-Unfolding Orthogonal Polyhedra. Lecture Notes in Computer Science, 2006, , 264-276.	1.3	3
23	Exact and approximation algorithms for computing optimal fat decompositions. Computational Geometry: Theory and Applications, 2004, 28, 19-27.	0.5	2
24	Grid Vertex-Unfolding Orthogonal Polyhedra. Discrete and Computational Geometry, 2008, 39, 213-238.	0.6	2
25	Computing Optimal Diameter-Bounded Polygon Partitions. Algorithmica, 2004, 40, 1-14.	1.3	1
26	Distributed construction of low-interference spanners. Distributed Computing, 2009, 22, 15-28.	0.8	1
27	Connecting Polygonizations via Stretches and Twangs. Theory of Computing Systems, 2010, 47, 674-695.	1.1	1
28	Continuous Yao graphs. Computational Geometry: Theory and Applications, 2018, 67, 42-52.	0.5	1
29	Cone-based spanners of constant degree. Computational Geometry: Theory and Applications, 2018, 68, 48-61.	0.5	1
30	Spanning Properties of Theta–Theta-6. Graphs and Combinatorics, 2020, 36, 525-538.	0.4	0
31	Unfolding polycube trees with constant refinement. Computational Geometry: Theory and Applications, 2021, 98, 101793.	0.5	0
32	Toward Unfolding Doubly Covered n-Stars. Lecture Notes in Computer Science, 2021, , 122-135.	1.3	0