Philip Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6345711/philip-kim-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

275	84,918	105	291
papers	citations	h-index	g-index
299 ext. papers	93,774 ext. citations	12.9 avg, IF	7.98 L-index

#	Paper	IF	Citations
275	Crossover between strongly coupled and weakly coupled exciton superfluids <i>Science</i> , 2022 , 375, 205-	2093 .3	4
274	Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. <i>Science</i> , 2021 , 371, 1133-1138	33.3	73
273	Josephson junction infrared single-photon detector. <i>Science</i> , 2021 , 372, 409-412	33.3	17
272	Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. <i>Physical Review B</i> , 2021 , 103,	3.3	10
271	Fast and accurate robotic optical detection of exfoliated graphene and hexagonal boron nitride by deep neural networks. 2D Materials, 2021, 8, 035017	5.9	2
270	Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. <i>Nature</i> , 2021 , 595, 48-52	50.4	16
269	Large Single Crystals of Two-Dimensional EConjugated Metal-Organic Frameworks via Biphasic Solution-Solid Growth. <i>ACS Central Science</i> , 2021 , 7, 104-109	16.8	16
268	Excitons in a reconstructed moir potential in twisted WSe/WSe homobilayers. <i>Nature Materials</i> , 2021 , 20, 480-487	27	44
267	Probing giant Zeeman shift in vanadium-doped WSe2 via resonant magnetotunneling transport. <i>Physical Review B</i> , 2021 , 103,	3.3	3
266	Dual-Gated Graphene Devices for Near-Field Nano-imaging. <i>Nano Letters</i> , 2021 , 21, 1688-1693	11.5	5
265	Aharonov-Bohm effect in graphene-based Fabry-PEot quantum Hall interferometers. <i>Nature Nanotechnology</i> , 2021 , 16, 563-569	28.7	10
264	Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. <i>Nature Communications</i> , 2021 , 12, 5332	17.4	1
263	High-bandwidth, variable-resistance differential noise thermometry. <i>Review of Scientific Instruments</i> , 2021 , 92, 014904	1.7	1
262	Coulomb Drag between a Carbon Nanotube and Monolayer Graphene <i>Physical Review Letters</i> , 2021 , 127, 257701	7.4	0
261	Imaging of 2-Dimensional Dislocation Networks in Twisted Bilayer Graphene and Beyond. Microscopy and Microanalysis, 2020, 26, 854-855	0.5	
260	Tuning Electrical Conductance of MoS Monolayers through Substitutional Doping. <i>Nano Letters</i> , 2020 , 20, 4095-4101	11.5	59
259	Imaging Andreev Reflection in Graphene. <i>Nano Letters</i> , 2020 , 20, 4890-4894	11.5	4

(2020-2020)

258	Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. <i>Physical Review B</i> , 2020 , 101,	3.3	14	
257	Electrically Tunable Valley Dynamics in Twisted WSe_{2}/WSe_{2} Bilayers. <i>Physical Review Letters</i> , 2020 , 124, 217403	7.4	50	
256	Bosonic topological insulator intermediate state in the superconductor-insulator transition. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126570	2.3	8	
255	Zhao et´al. Reply. <i>Physical Review Letters</i> , 2020 , 124, 249702	7.4	1	
254	Tunable spin-polarized correlated states in twisted double bilayer graphene. <i>Nature</i> , 2020 , 583, 221-22	550.4	191	
253	Controlling Excitons in an Atomically Thin Membrane with a Mirror. <i>Physical Review Letters</i> , 2020 , 124, 027401	7.4	36	
252	Nano-photocurrent Mapping of Local Electronic Structure in Twisted Bilayer Graphene. <i>Nano Letters</i> , 2020 , 20, 2958-2964	11.5	20	
251	Bi2Se3 thin films heteroepitaxially grown on R uCl3. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1	
250	Spatially correlated incommensurate lattice modulations in an atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+y superconductor. <i>Physical Review Materials</i> , 2020 , 4,	3.2	2	
249	Fractional Quantum Hall Effects in Graphene 2020 , 317-375		4	
248	Asymmetric photoelectric effect: Auger-assisted hot hole photocurrents in transition metal dichalcogenides. <i>Nanophotonics</i> , 2020 , 10, 105-113	6.3	1	
247	Imaging the flow of holes from a collimating contact in graphene. <i>Semiconductor Science and Technology</i> , 2020 , 35, 09LT02	1.8		
246	Strongly adhesive dry transfer technique for van der Waals heterostructure. 2D Materials, 2020, 7, 0410	0959	16	
245	Graphene-based Josephson junction microwave bolometer. <i>Nature</i> , 2020 , 586, 42-46	50.4	32	
244	Imaging viscous flow of the Dirac fluid in graphene. <i>Nature</i> , 2020 , 583, 537-541	50.4	69	
243	Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe/MoSe bilayers. <i>Nature Nanotechnology</i> , 2020 , 15, 750-754	28.7	46	
242	40 years of the quantum Hall effect. <i>Nature Reviews Physics</i> , 2020 , 2, 397-401	23.6	18	

Guiding Dirac Fermions in Graphene with a Carbon Nanotube. *Physical Review Letters*, **2019**, 123, 2168047.4

Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural

and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964

16

105

16.8

224

223

(2017-2019)

222	Impact of geometry and non-idealities on electron liptics libased graphene p-n junction devices. <i>Applied Physics Letters</i> , 2019 , 114, 013507	3.4	11
221	Logarithmic singularities and quantum oscillations in magnetically doped topological insulators. <i>Physical Review B</i> , 2018 , 97,	3.3	3
220	Guided Modes of Anisotropic van der Waals Materials Investigated by near-Field Scanning Optical Microscopy. <i>ACS Photonics</i> , 2018 , 5, 1196-1201	6.3	10
219	Large Excitonic Reflectivity of Monolayer MoSe_{2} Encapsulated in Hexagonal Boron Nitride. <i>Physical Review Letters</i> , 2018 , 120, 037402	7.4	117
218	Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures. <i>Nano Letters</i> , 2018 , 18, 460-466	11.5	37
217	Electrical control of charged carriers and excitons in atomically thin materials. <i>Nature Nanotechnology</i> , 2018 , 13, 128-132	28.7	113
216	Imaging electron flow from collimating contacts in graphene. 2D Materials, 2018, 5, 021003	5.9	11
215	Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. <i>Light: Science and Applications</i> , 2018 , 7, 27	16.7	51
214	Band structure engineering of 2D materials using patterned dielectric superlattices. <i>Nature Nanotechnology</i> , 2018 , 13, 566-571	28.7	87
213	Measuring the Local Twist Angle and Layer Arrangement in Van der Waals Heterostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1800191	1.3	7
212	Valleytronics: Opportunities, Challenges, and Paths Forward. Small, 2018, 14, e1801483	11	96
211	Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. <i>Science Advances</i> , 2018 , 4, eaat7189	14.3	68
210	Heterointerface effects in the electrointercalation of van der Waals heterostructures. <i>Nature</i> , 2018 , 558, 425-429	50.4	125
209	Signatures of long-range-correlated disorder in the magnetotransport of ultrathin topological insulators. <i>Physical Review B</i> , 2018 , 98,	3.3	8
208	Photonic crystals for nano-light in moir@raphene superlattices. <i>Science</i> , 2018 , 362, 1153-1156	33.3	164
207	Imaging quantum dot formation in MoS nanostructures. <i>Nanotechnology</i> , 2018 , 29, 42LT03	3.4	4
206	Dirac electrons in a dodecagonal graphene quasicrystal. <i>Science</i> , 2018 , 361, 782-786	33.3	132
205	Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. <i>Science</i> , 2017 , 355, 503-507	33.3	74

204	Franklan der Merwe Growth versus Volmerlweber Growth in Successive Stacking of a Few-Layer Bi2Te3/Sb2Te3 by van der Waals Heteroepitaxy: The Critical Roles of Finite Lattice-Mismatch with Seed Substrates. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600375	6.4	14
203	Unbalanced Hole and Electron Diffusion in Lead Bromide Perovskites. <i>Nano Letters</i> , 2017 , 17, 1727-173	3211.5	75
202	Holography of the Dirac Fluid in Graphene with Two Currents. <i>Physical Review Letters</i> , 2017 , 118, 0366	01 _{7.4}	29
201	Analysis of Scanned Probe Images for Magnetic Focusing in Graphene. <i>Journal of Electronic Materials</i> , 2017 , 46, 3837-3841	1.9	5
200	Epitaxially Self-Assembled Alkane Layers for Graphene Electronics. <i>Advanced Materials</i> , 2017 , 29, 1603	92 <u>5</u> µ	21
199	Quantum Hall drag of exciton condensate in graphene. <i>Nature Physics</i> , 2017 , 13, 746-750	16.2	101
198	Inducing superconducting correlation in quantum Hall edge states. <i>Nature Physics</i> , 2017 , 13, 693-698	16.2	77
197	Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene. <i>Nano Letters</i> , 2017 , 17, 7080-7085	11.5	37
196	Graphene-Based Josephson-Junction Single-Photon Detector. <i>Physical Review Applied</i> , 2017 , 8,	4.3	47
195	Imaging Electron Motion in a Few Layer MoS2 Device. <i>Journal of Physics: Conference Series</i> , 2017 , 864, 012031	0.3	2
194	Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride. <i>ACS Nano</i> , 2017 , 11, 8741-8746	16.7	34
193	Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures. <i>Physical Review Letters</i> , 2017 , 119, 056802	7.4	16
192	Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. <i>Nano Letters</i> , 2017 , 17, 5335-5341	11.5	39
191	Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. <i>Nano Letters</i> , 2017 , 17, 5734-5739	11.5	67
190	2D materials: Curved paths of electron-hole pairs. <i>Nature Materials</i> , 2017 , 16, 1169-1170	27	1
189	Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. <i>Nature Nanotechnology</i> , 2017 , 12, 856-860	28.7	191
188	Low-Temperature Ohmic Contact to Monolayer MoS by van der Waals Bonded Co/h-BN Electrodes. <i>Nano Letters</i> , 2017 , 17, 4781-4786	11.5	164
187	Thermal Transport Signatures of Broken-Symmetry Phases in Graphene. <i>Physical Review Letters</i> , 2017 , 119, 027601	7.4	8

(2016-2016)

186	Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	115
185	Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering. <i>Physical Review Letters</i> , 2016 , 116, 136802	7.4	109
184	Ambipolar transport and magneto-resistance crossover in a Mott insulator, SrIrO. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 505304	1.8	10
183	Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. <i>ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process. ACS Applied Materials & Device Fabricated By All-Dry Transfer Process.</i>	9.5	38
182	Modulation of mechanical resonance by chemical potential oscillation in graphene. <i>Nature Physics</i> , 2016 , 12, 240-244	16.2	28
181	Nature of the quantum metal in a two-dimensional crystalline superconductor. <i>Nature Physics</i> , 2016 , 12, 208-212	16.2	177
180	Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2. <i>Nature Physics</i> , 2016 , 12, 328-332	16.2	108
179	Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. <i>Science</i> , 2016 , 351, 1058-61	33.3	328
178	Imaging Cyclotron Orbits of Electrons in Graphene. <i>Nano Letters</i> , 2016 , 16, 1690-4	11.5	55
177	van der Waals Solids from Self-Assembled Nanoscale Building Blocks. <i>Nano Letters</i> , 2016 , 16, 1445-9	11.5	47
176	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. <i>Nature Nanotechnology</i> , 2016 , 11, 426-31	28.7	227
175	Mapping Periodic Lattice Distortions in Exfoliated Dichalchogenides with Atomic Resolution cryo-STEM. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1550-1551	0.5	
174	Thickness and Stacking Sequence Determination of Exfoliated Dichalchogenides Using Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1456-1457	0.5	
173	Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires. Journal of Applied Physics, 2016 , 119, 234304	2.5	22
172	Two-dimensional van der Waals materials. <i>Physics Today</i> , 2016 , 69, 38-44	0.9	256
171	Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2151-6	6.4	71
170	Patterning Superatom Dopants on Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2016 , 16, 3385-9	11.5	44
169	Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11420-1142	4 ^{11.5}	62

Ferromagnetic ordering in superatomic solids. Journal of the American Chemical Society, 2014, 136, 16926634

Heterostructures based on inorganic and organic van der Waals systems. APL Materials, 2014, 2, 092511 5.7

47

52

152

151

150	Electronic transport in nanoparticle monolayers sandwiched between graphene electrodes. <i>Nanoscale</i> , 2014 , 6, 14158-62	7.7	8
149	Atomically thin p-n junctions with van der Waals heterointerfaces. <i>Nature Nanotechnology</i> , 2014 , 9, 676	- 8 18.7	1598
148	Graphene nanoribbon devices at high bias. <i>Nano Convergence</i> , 2014 , 1, 1	9.2	57
147	Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures. <i>Advanced Functional Materials</i> , 2014 , 24, 5157-5163	15.6	57
146	Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene. <i>Science</i> , 2014 , 345, 61-4	33.3	113
145	Measurement of collective dynamical mass of Dirac fermions in graphene. <i>Nature Nanotechnology</i> , 2014 , 9, 594-9	28.7	45
144	Plasmonics with two-dimensional conductors. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2014 , 372, 20130104	3	13
143	Flexible Electronics: Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers (Small 18/2014). <i>Small</i> , 2014 , 10, 3812-3812	11	7
142	Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire. <i>Applied Physics Letters</i> , 2014 , 104, 043105	3.4	24
141	Experimental Manifestation of Berry Phase in Graphene. <i>Nanoscience and Technology</i> , 2014 , 3-27	0.6	1
140	Direct imaging of charged impurity density in common graphene substrates. <i>Nano Letters</i> , 2013 , 13, 35	76:189	60
139	Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. <i>ACS Nano</i> , 2013 , 7, 7931-6	16.7	800
138	One-dimensional electrical contact to a two-dimensional material. <i>Science</i> , 2013 , 342, 614-7	33.3	1676
137	The role of surface oxygen in the growth of large single-crystal graphene on copper. <i>Science</i> , 2013 , 342, 720-3	33.3	868
136	Shape-dependent two-photon absorption in two-dimensionally extended benzoporphyrin arrays. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10612-5	3.6	15
135	Evidence for a spin phase transition at charge neutrality in bilayer graphene. <i>Nature Physics</i> , 2013 , 9, 154-158	16.2	115
134	Electrically integrated SU-8 clamped graphene drum resonators for strain engineering. <i>Applied Physics Letters</i> , 2013 , 102, 153101	3.4	51
133	Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. <i>Nature Communications</i> , 2013 , 4, 1624	17.4	504

132	Graphene Field-Effect Transistors Based on Boron Nitride Dielectrics. <i>Proceedings of the IEEE</i> , 2013 , 101, 1609-1619	14.3	114
131	Nanoscale atoms in solid-state chemistry. <i>Science</i> , 2013 , 341, 157-60	33.3	162
130	Hofstadter's butterfly and the fractal quantum Hall effect in moir uperlattices. Nature, 2013, 497, 598	-69024	1084
129	Single-gate bandgap opening of bilayer graphene by dual molecular doping. <i>Advanced Materials</i> , 2012 , 24, 407-11	24	212
128	All-optical structure assignment of individual single-walled carbon nanotubes from Rayleigh and Raman scattering measurements. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 2436-2441	1.3	8
127	Graphene based heterostructures. <i>Solid State Communications</i> , 2012 , 152, 1275-1282	1.6	158
126	Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy. <i>Physical Review Letters</i> , 2012 , 109, 116802	7.4	73
125	Electronic compressibility of layer-polarized bilayer graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	112
124	Water-gated charge doping of graphene induced by mica substrates. <i>Nano Letters</i> , 2012 , 12, 648-54	11.5	146
123	Graphene barristor, a triode device with a gate-controlled Schottky barrier. <i>Science</i> , 2012 , 336, 1140-3	33.3	748
122	Spin and valley quantum Hall ferromagnetism in graphene. <i>Nature Physics</i> , 2012 , 8, 550-556	16.2	255
121	Large physisorption strain in chemical vapor deposition of graphene on copper substrates. <i>Nano Letters</i> , 2012 , 12, 2408-13	11.5	107
120	Connecting dopant bond type with electronic structure in N-doped graphene. <i>Nano Letters</i> , 2012 , 12, 4025-31	11.5	381
119	Tailoring electrical transport across grain boundaries in polycrystalline graphene. <i>Science</i> , 2012 , 336, 1143-6	33.3	469
118	Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2012 , 100, 163503	3.4	23
117	Magnetoresistance measurements of graphene at the charge neutrality point. <i>Physical Review Letters</i> , 2012 , 108, 106804	7.4	69
116	Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. <i>Nanotechnology</i> , 2011 , 22, 295707	3.4	21
115	High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon. <i>Applied Physics Letters</i> , 2011 , 99, 183105	3.4	61

114	Measurement of the 월1/3 fractional quantum hall energy gap in suspended graphene. <i>Physical Review Letters</i> , 2011 , 106, 046801	7.4	66
113	Visualizing individual nitrogen dopants in monolayer graphene. <i>Science</i> , 2011 , 333, 999-1003	33.3	69 7
112	Single-layer graphene cathodes for organic photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 123303	3.4	53
111	Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements. <i>Nano Letters</i> , 2011 , 11, 1093-7	11.5	122
110	Multiband transport in bilayer graphene at high carrier densities. <i>Physical Review B</i> , 2011 , 84,	3.3	27
109	Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano, 2011 , 5, 4123-30	16.7	134
108	Making angle-resolved photoemission measurements on corrugated monolayer crystals: Suspended exfoliated single-crystal graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	43
107	Collapse of Landau levels in gated graphene structures. <i>Physical Review Letters</i> , 2011 , 106, 066601	7.4	43
106	Cyclotron Resonance near the Charge Neutrality Point of Graphene 2011,		3
105	Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. <i>Nature Nanotechnology</i> , 2011 , 6, 126-32	28.7	287
104	Multicomponent fractional quantum Hall effect in graphene. <i>Nature Physics</i> , 2011 , 7, 693-696	16.2	347
103	Low bias electron scattering in structure-identified single wall carbon nanotubes: role of substrate polar phonons. <i>Physical Review Letters</i> , 2011 , 107, 146601	7.4	13
102	Electronic Transport in Graphene Heterostructures. <i>Annual Review of Condensed Matter Physics</i> , 2011 , 2, 101-120	19.7	65
101	Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. <i>Advanced Materials</i> , 2011 , 23, 3531-5	24	87
100	Toward carbon based quantum electronics: Quantum transport in graphene heterojunctions 2011,		1
99	Nanocrystalline Graphite Growth on Sapphire by Carbon Molecular Beam Epitaxy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4491-4494	3.8	102
98	Synthesis and electrical characterization of magnetic bilayer graphene intercalate. <i>Nano Letters</i> , 2011 , 11, 860-5	11.5	83
97	Multilayer graphene grown by precipitation upon cooling of nickel on diamond. <i>Carbon</i> , 2011 , 49, 1006	-101.2	48

7.4

7.4

1

429

80

79

Henriksen et al. Reply:. Physical Review Letters, 2010, 105,

Electron transport in disordered graphene nanoribbons. Physical Review Letters, 2010, 104, 056801

(2008-2010)

78	Multilayer graphene films grown by molecular beam deposition. <i>Solid State Communications</i> , 2010 , 150, 809-811	1.6	30
77	Optical phonon mixing in bilayer graphene with a broken inversion symmetry. <i>Physical Review B</i> , 2009 , 80,	3.3	70
76	Large-scale pattern growth of graphene films for stretchable transparent electrodes. <i>Nature</i> , 2009 , 457, 706-10	50.4	8675
75	Near-field focusing and magnification through self-assembled nanoscale spherical lenses. <i>Nature</i> , 2009 , 460, 498-501	50.4	2 90
74	Observation of the fractional quantum Hall effect in graphene. <i>Nature</i> , 2009 , 462, 196-9	50.4	746
73	Performance of monolayer graphene nanomechanical resonators with electrical readout. <i>Nature Nanotechnology</i> , 2009 , 4, 861-7	28.7	694
72	Quantum interference and Klein tunnelling in graphene heterojunctions. <i>Nature Physics</i> , 2009 , 5, 222-2	26 6.2	858
71	Observation of graphene bubbles and effective mass transport under graphene films. <i>Nano Letters</i> , 2009 , 9, 332-7	11.5	164
70	Thermal probing of energy dissipation in current-carrying carbon nanotubes. <i>Journal of Applied Physics</i> , 2009 , 105, 104306	2.5	86
69	Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. <i>Nano Letters</i> , 2009 , 9, 4133-7	11.5	240
68	Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. <i>Physical Review Letters</i> , 2009 , 102, 037403	7.4	207
67	Tuning the graphene work function by electric field effect. <i>Nano Letters</i> , 2009 , 9, 3430-4	11.5	1073
66	Thermoelectric power measurements of wide band gap semiconducting nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 022106	3.4	75
65	Thermoelectric and magnetothermoelectric transport measurements of graphene. <i>Physical Review Letters</i> , 2009 , 102, 096807	7.4	552
64	Molecular-scale quantum dots from carbon nanotube heterojunctions. <i>Nano Letters</i> , 2009 , 9, 1544-8	11.5	25
63	Graphene nanoribbon devices and quantum heterojunction devices 2009,		4
62	NEMS applications of graphene 2009 ,		2
61	Carbon wonderland. <i>Scientific American</i> , 2008 , 298, 90-7	0.5	235

		Рни	P KIM
60	Current saturation in zero-bandgap, top-gated graphene field-effect transistors. <i>Nature Nanotechnology</i> , 2008 , 3, 654-9	28.7	1223
59	Dirac charge dynamics in graphene by infrared spectroscopy. <i>Nature Physics</i> , 2008 , 4, 532-535	16.2	983
58	Reversible basal plane hydrogenation of graphene. <i>Nano Letters</i> , 2008 , 8, 4597-602	11.5	479
57	Characterization and modeling of graphene field-effect devices 2008,		13
56	Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. <i>Physical Review B</i> , 2008 , 78,	3.3	97
55	RF performance of top-gated, zero-bandgap graphene field-effect transistors 2008 ,		75
54	Cyclotron resonance in bilayer graphene. <i>Physical Review Letters</i> , 2008 , 100, 087403	7.4	168
53	Observation of anomalous phonon softening in bilayer graphene. <i>Physical Review Letters</i> , 2008 , 101, 136804	7.4	147
52	Scanning Tunneling Microscope Studies of Ultrathin Graphitic (Graphene) Films on an Insulating Substrate under Ambient Conditions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6681-6688	3.8	12
51	Ultrahigh electron mobility in suspended graphene. <i>Solid State Communications</i> , 2008 , 146, 351-355	1.6	5892
50	Temperature-dependent transport in suspended graphene. <i>Physical Review Letters</i> , 2008 , 101, 096802	7.4	911
49	Electric field effect tuning of electron-phonon coupling in graphene. <i>Physical Review Letters</i> , 2007 , 98, 166802	7.4	872
48	Measurement of scattering rate and minimum conductivity in graphene. <i>Physical Review Letters</i> , 2007 , 99, 246803	7.4	803
47	Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions. <i>Physical Review Letters</i> , 2007 , 99, 166804	7.4	403
46	Quantum Hall effect in graphene. Solid State Communications, 2007, 143, 14-19	1.6	121
45	Raman scattering and tunable electronphonon coupling in single layer graphene. <i>Solid State Communications</i> , 2007 , 143, 39-43	1.6	37
44	Electronic transport measurements in graphene nanoribbons. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4134-4137	1.3	30

Quantum Hall states near the charge-neutral Dirac point in graphene. *Physical Review Letters*, **2007**, 99, 106802

285

7.4

42	Energy band-gap engineering of graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 206805	7.4	4124
41	High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9209-12	11.5	494
40	Room-temperature quantum Hall effect in graphene. Science, 2007, 315, 1379	33.3	2342
39	Temperature dependent electron transport in graphene. <i>European Physical Journal: Special Topics</i> , 2007 , 148, 15-18	2.3	155
38	GRAPHENE IN EXTREMELY HIGH MAGNETIC FIELDS. <i>International Journal of Modern Physics B</i> , 2007 , 21, 1123-1130	1.1	4
37	Scaling of resistance and electron mean free path of single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2007 , 98, 186808	7.4	243
36	Electronic transport in locally gated graphene nanoconstrictions. <i>Applied Physics Letters</i> , 2007 , 91, 192	10374	156
35	Infrared spectroscopy of Landau levels of graphene. <i>Physical Review Letters</i> , 2007 , 98, 197403	7.4	444
34	Electron transport in a multichannel one-dimensional conductor: molybdenum selenide nanowires. <i>Physical Review Letters</i> , 2006 , 96, 076601	7.4	103
33	Landau-level splitting in graphene in high magnetic fields. <i>Physical Review Letters</i> , 2006 , 96, 136806	7.4	610
32	Unusually High Thermal Conductivity in Carbon Nanotubes 2006 , 227-265		10
31	Chemoresponsive monolayer transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11452-6	11.5	131
30	Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. <i>Science</i> , 2006 , 311, 356-9	33.3	390
29	Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3418-3422	1.3	36
28	Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15045-7	16.4	151
27	Quasi-continuous growth of ultralong carbon nanotube arrays. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15336-7	16.4	122
26	Electric field modulation of galvanomagnetic properties of mesoscopic graphite. <i>Physical Review Letters</i> , 2005 , 94, 176803	7.4	363
25	Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. <i>Applied Physics Letters</i> , 2005 , 86, 073104	3.4	335

24	Experimental observation of the quantum Hall effect and Berry's phase in graphene. <i>Nature</i> , 2005 , 438, 201-4	50.4	10820
23	Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 14155-8	11.5	59
22	Growth of nanotubes and chemical sensor applications 2004,		2
21	THERMOPOWER MEASUREMENT OF INDIVIDUAL SINGLE WALLED CARBON NANOTUBES. Microscale Thermophysical Engineering, 2004 , 8, 1-5		17
20	Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. <i>Solid State Communications</i> , 2003 , 127, 181-186	1.6	111
19	Thermal conductivity of individual silicon nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2934-2936	3.4	1342
18	Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors. <i>Nano Letters</i> , 2003 , 3, 877-881	11.5	276
17	Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. <i>Journal of Heat Transfer</i> , 2003 , 125, 881-888	1.8	557
16	Modulation of thermoelectric power of individual carbon nanotubes. <i>Physical Review Letters</i> , 2003 , 91, 256801	7.4	226
15	Conductance measurement of single-walled carbon nanotubes in aqueous environment. <i>Applied Physics Letters</i> , 2003 , 82, 2338-2340	3.4	28
14	Mesoscopic thermal transport and energy dissipation in carbon nanotubes. <i>Physica B: Condensed Matter</i> , 2002 , 323, 67-70	2.8	101
13	Charge density wave formation in nanocrystals. <i>Solid State Physics</i> , 2001 , 119-157	2	3
12	Thermal transport measurements of individual multiwalled nanotubes. <i>Physical Review Letters</i> , 2001 , 87, 215502	7.4	2461
11	STM study of single-walled carbon nanotubes. <i>Carbon</i> , 2000 , 38, 1741-1744	10.4	34
10	Structure and Electronic Properties of Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 2794-2809	3.4	545
9	Structure of flux line lattices with weak disorder at large length scales. <i>Physical Review B</i> , 1999 , 60, R1.	25 8 9-R	125,92
8	Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. <i>Physical Review Letters</i> , 1999 , 82, 1225-1228	7.4	313
7	Nanotube nanotweezers. <i>Science</i> , 1999 , 286, 2148-50	33.3	1010

LIST OF PUBLICATIONS

6	Atomic structure and electronic properties of single-walled carbon nanotubes. <i>Nature</i> , 1998 , 391, 62-6	4 50.4	2107
5	Scanning Tunneling Microscopy and Spectroscopy Studies of Single Wall Carbon Nanotubes. <i>Journal of Materials Research</i> , 1998 , 13, 2380-2388	2.5	46
4	Single-walled carbon nanotube probes for high-resolution nanostructure imaging. <i>Applied Physics Letters</i> , 1998 , 73, 3465-3467	3.4	152
3	Creation of Nanocrystals Through a Solid-Solid Phase Transition Induced by an STM Tip. <i>Science</i> , 1996 , 274, 757-760	33.3	53
2	Creation of Nanocrystals Via a Tip-Induced Solid-Solid Transformation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 466, 89		2
1	Vortex Lattice Structure in Bi2Sr2CaCu2O8+ delta at High Temperatures. <i>Physical Review Letters</i> , 1996 , 77, 5118-5121	7.4	20