
Chunyang Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634524/publications.pdf Version: 2024-02-01

<u> <u>Chunyanc</u> lia</u>

#	Article	IF	CITATIONS
1	Simple hybrid dithiafulvenes-triphenylamine systems as dopant-free hole-transporting materials for efficient perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 293-299.	12.9	6
2	Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 1499-1508.	6.7	16
3	Cooperative effects of Dopant-Free Hole-Transporting materials and polycarbonate film for sustainable perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135197.	12.7	13
4	A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nature Energy, 2022, 7, 144-152.	39.5	123
5	Boosting capacitive energy density of conjugated molecule modified porous graphene film as high-performance electrode materials. Electrochimica Acta, 2022, 419, 140404.	5.2	13
6	Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A, 2022, 10, 12532-12543.	10.3	20
7	Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells. Joule, 2022, 6, 1689-1709.	24.0	38
8	Fully integrated pressure-controlled electrochromic E-skins. Journal of Materials Chemistry A, 2021, 9, 9134-9144.	10.3	18
9	Sponge Graphene Aerogel Pressure Sensors with an Extremely Wide Operation Range for Human Recognition and Motion Detection. ACS Applied Electronic Materials, 2021, 3, 1301-1310.	4.3	26
10	Redox Molecule Adsorbed Graphene Films with Compact Structure for Electrochemical Energy Storage. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032003.	0.3	0
11	An efficient and hydrophobic molecular doping in perovskite solar cells. Nano Energy, 2021, 82, 105751.	16.0	35
12	Dipole evoked hole-transporting material p-doping by utilizing organic salt for perovskite solar cells. Nano Energy, 2021, 85, 106018.	16.0	32
13	Simple molecular structure but high efficiency: Achieving over 9% efficiency in dye-sensitized solar cells using simple triphenylamine sensitizer. Journal of Power Sources, 2021, 506, 230214.	7.8	7
14	Infrared electrochromic materials, devices and applications. Applied Materials Today, 2021, 24, 101073.	4.3	45
15	A new strategy for constructing a dispiro-based dopant-free hole-transporting material: spatial configuration of spiro-bifluorene changes from a perpendicular to parallel arrangement. Chemical Science, 2021, 12, 8548-8555.	7.4	14
16	A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Solar Energy Materials and Solar Cells, 2020, 207, 110337.	6.2	78
17	Interface induced in-situ vertical phase separation from MAPbI3:Spiro-OMeTAD precursors for perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 216, 110689.	6.2	5
18	Conjugated molecule functionalized graphene films for energy storage devices with high energy density. Electrochimica Acta, 2020, 340, 135804.	5.2	15

#	Article	IF	CITATIONS
19	Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device. ACS Applied Materials & Interfaces, 2020, 12, 27526-27536.	8.0	44
20	Vertical Phase Separated Cesium Fluoride Doping Organic Electron Transport Layer: A Facile and Efficient "Bridge―Linked Heterojunction for Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001418.	14.9	44
21	Achieved RGBY Four Colors Changeable Electrochromic Pixel by Coelectrodeposition of Iron Hexacyanoferrate and Molybdate Hexacyanoferrate. ACS Applied Materials & Interfaces, 2020, 12, 29432-29442.	8.0	5
22	A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry A, 2020, 8, 12799-12809.	10.3	101
23	Graphene Hydrogel Film Adsorbed with Redox-Active Molecule Toward Energy Storage Device with Improved Energy Density and Unfading Superior Rate Capability. ACS Sustainable Chemistry and Engineering, 2020, 8, 9896-9905.	6.7	19
24	Novel hole transporting material based on tetrathiafulvalene derivative: A step towards dopant free, ambient stable and efficient perovskite solar cells. Solar Energy, 2020, 201, 658-665.	6.1	9
25	A pressure process for efficient and stable perovskite solar cells. Nano Energy, 2020, 77, 105063.	16.0	35
26	Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. Journal of Power Sources, 2020, 453, 227851.	7.8	69
27	Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability. Solar Energy Materials and Solar Cells, 2020, 208, 110417.	6.2	15
28	Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells. Nano Energy, 2020, 70, 104509.	16.0	67
29	Tetraphenylbutadiene-Based Symmetric 3D Hole-Transporting Materials for Perovskite Solar Cells: A Trial Trade-off between Charge Mobility and Film Morphology. ACS Applied Materials & Interfaces, 2020, 12, 21088-21099.	8.0	35
30	Similar "relay race―capacitance behaviors of folded graphene films based high-performance supercapacitors. Journal of Power Sources, 2020, 460, 228108.	7.8	9
31	Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 5431-5441.	6.7	53
32	Self-healing dynamically cross linked versatile polymer electrolyte: A novel approach towards high performance, flexible electrochromic devices. Electrochimica Acta, 2019, 320, 134489.	5.2	28
33	Constructing molecules supported holey graphene sheets framework in compact graphene film to achieve synergistic effect for ion transport and high gravimetric/volumetric capacitances. Journal of Power Sources, 2019, 441, 227167.	7.8	17
34	Flexible Solid-State Supercapacitors with High Areal Performance Enabled by Chlorine-Doped Graphene Films with Commercial-Level Mass Loading. ACS Sustainable Chemistry and Engineering, 2019, 7, 18844-18853.	6.7	32
35	Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells. Nano Energy, 2019, 66, 104098.	16.0	31
36	Iodine-steam functionalized reduced graphene oxide/oxidized carbon yarn electrodes for knittable fibriform supercapacitor. Journal of Power Sources, 2019, 442, 227188.	7.8	6

#	Article	IF	CITATIONS
37	Origin of increased efficiency and decreased hysteresis of perovskite solar cells by using 4-tert-butyl pyridine as interfacial modifier for TiO2. Journal of Power Sources, 2019, 415, 197-206.	7.8	7
38	Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips. Biosensors and Bioelectronics, 2019, 139, 111296.	10.1	26
39	Directly grown high-performance WO ₃ films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. Journal of Materials Chemistry A, 2019, 7, 13956-13967.	10.3	67
40	Improving Performance of Fibriform Supercapacitor Based on Cotton Thread by Uncoiling Dip-Coating Procedure. IOP Conference Series: Materials Science and Engineering, 2019, 677, 052009.	0.6	0
41	Toward high-rate supercapacitor: Preparation of hierarchical porous carbon binder-free electrode with controllable texture. Applied Surface Science, 2019, 470, 573-580.	6.1	21
42	A rapid heat pressing strategy to prepare fluffy reduced graphene oxide films with meso/macropores for high-performance supercapacitors. Chemical Engineering Journal, 2019, 361, 1437-1450.	12.7	44
43	A Novel Strategy of One Device Achieves Two Functions: Energy Storage and Temperature Sense Multi-functions Device Based on Graphene Planar-Structure Supercapacitor. MRS Advances, 2019, 4, 1321-1326.	0.9	0
44	Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochimica Acta, 2019, 296, 75-81.	5.2	37
45	Toward high capacitance and rate capability supercapacitor: Three dimensional graphene network fabricated by electric field-assisted assembly method. Applied Surface Science, 2019, 467-468, 949-953.	6.1	13
46	Efficient Sb2Se3 sensitized solar cells prepared through a facile SILAR process and improved performance by interface modification. Applied Surface Science, 2018, 450, 228-235.	6.1	18
47	Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy and Environmental Science, 2018, 11, 2035-2045.	30.8	217
48	lodine-steam doped graphene films for high-performance electrochemical capacitive energy storage. Journal of Power Sources, 2018, 400, 605-612.	7.8	25
49	Intelligent Biomimetic Chameleon Skin with Excellent Self-Healing and Electrochromic Properties. ACS Applied Materials & Interfaces, 2018, 10, 35533-35538.	8.0	63
50	Three-dimensional ordered macroporous NiFe2O4 coated carbon yarn for knittable fibriform supercapacitor. Electrochimica Acta, 2018, 281, 717-724.	5.2	43
51	A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. Electrochimica Acta, 2018, 286, 296-303.	5.2	25
52	Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. Applied Surface Science, 2018, 462, 517-525.	6.1	18
53	Improving the performance of Sb2Se3 sensitized solar cells with a versatile CdSe layer modification. Applied Materials Today, 2018, 12, 191-197.	4.3	10
54	The novel dopant for hole-transporting material opens a new processing route to efficiently reduce hysteresis and improve stability of planar perovskite solar cells. Journal of Power Sources, 2017, 342, 886-895.	7.8	76

Chunyang Jia

#	Article	IF	CITATIONS
55	Dissolution-recrystallization method for high efficiency perovskite solar cells. Applied Surface Science, 2017, 408, 34-37.	6.1	33
56	Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors. Applied Surface Science, 2017, 422, 975-984.	6.1	20
57	In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. Journal of Power Sources, 2017, 360, 48-58.	7.8	40
58	Cesium Iodide Interface Modification for High Efficiency, High Stability and Low Hysteresis Perovskite Solar Cells. Electrochimica Acta, 2017, 236, 122-130.	5.2	34
59	Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process. Carbon, 2017, 114, 424-434.	10.3	45
60	Structure-Performance Relationships of Hole-Transporting Materials in Perovskite Solar Cells: Minor Structural Discrepancy Effects on the Efficiency. Electrochimica Acta, 2017, 257, 380-387.	5.2	15
61	A novel self-healing electrochromic film based on a triphenylamine cross-linked polymer. Polymer Chemistry, 2017, 8, 6981-6988.	3.9	22
62	Novel electrochromic and infrared emissivity modulation films based on poly(carbazoyltriphenylamine) and poly(carbazoyltriphenylamine-thiophene). Organic Electronics, 2017, 51, 190-199.	2.6	11
63	Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO ₂ Compact Electron Transport Layers. Journal of Physical Chemistry C, 2017, 121, 20150-20157.	3.1	64
64	A Strategy To Boost the Efficiency of Rhodanine Electron Acceptor for Organic Dye: From Nonconjugation to Conjugation. ACS Applied Materials & Interfaces, 2017, 9, 25225-25231.	8.0	32
65	A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells. Journal of Power Sources, 2017, 359, 577-584.	7.8	24
66	Co-sensitization of Dithiafulvenyl-Phenothiazine Based Organic Dyes with N719 for Efficient Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 211, 364-374.	5.2	60
67	A Knittable Fibriform Supercapacitor Based on Natural Cotton Thread Coated with Graphene and Carbon Nanoparticles. Electrochimica Acta, 2016, 206, 155-164.	5.2	48
68	Enhanced photovoltaic performances of dye-sensitized solar cells sensitized with D-D-Ï€-A phenothiazine-based dyes. Synthetic Metals, 2016, 221, 95-102.	3.9	17
69	Facile preparation of CoNi ₂ S ₄ @NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Advances, 2016, 6, 112307-112316.	3.6	37
70	A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. Journal of Power Sources, 2016, 327, 365-373.	7.8	66
71	Electrodeposition of V ₂ O ₅ on TiO ₂ nanorod arrays and their electrochromic properties. RSC Advances, 2016, 6, 68997-69006.	3.6	38
72	Synthesis and electrochromic properties of a novel conducting polymer film based on dithiafulvenyl-triphenylamine-di(N-carbazole). Electrochimica Acta, 2016, 190, 1015-1024.	5.2	29

#	Article	IF	CITATIONS
73	Enhanced electrochemical performance of laser scribed graphene films decorated with manganese dioxide nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 2564-2573.	2.2	34
74	Dithiafulvenyl–triphenylamine organic dyes with alkyl chains for efficient coadsorbent-free dye-sensitized solar cells. RSC Advances, 2015, 5, 50813-50820.	3.6	26
75	A novel tri-layered photoanode of hierarchical ZnO microspheres on 1D ZnO nanowire arrays for dye-sensitized solar cells. RSC Advances, 2015, 5, 16678-16683.	3.6	25
76	A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. Journal of Power Sources, 2015, 296, 186-196.	7.8	111
77	In situ growth of hierarchical NiS ₂ hollow microspheres as efficient counter electrode for dye-sensitized solar cell. Nanoscale, 2015, 7, 12737-12742.	5.6	84
78	Significant improvement of phenothiazine organic dye-sensitized solar cell performance using dithiafulvenyl unit as additional donor. Organic Electronics, 2015, 27, 107-113.	2.6	30
79	Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Solar Energy Materials and Solar Cells, 2015, 132, 467-475.	6.2	60
80	Theoretical investigation of phenothiazine–triphenylamine-based organic dyes with different π spacers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 282-289.	3.9	25
81	Organic dyes with imidazole derivatives as auxiliary donors for dye-sensitized solar cells: Experimental and theoretical investigation. Dyes and Pigments, 2014, 104, 48-56.	3.7	31
82	The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochimica Acta, 2014, 121, 49-56.	5.2	40
83	Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synthetic Metals, 2014, 189, 69-76.	3.9	56
84	Electrosynthesis and characterization of a novel electrochromic film based on poly (4,4′-di(N-carbazolyl)triphenylamine). Synthetic Metals, 2014, 188, 104-110.	3.9	12
85	Novel organic sensitizers containing dithiafulvenyl units as additional donors for efficient dye-sensitized solar cells. RSC Advances, 2014, 4, 34896.	3.6	29
86	Comparative study on photovoltaic properties of imidazole-based dyes containing varying electron acceptors in dye-sensitized solar cells. Synthetic Metals, 2014, 196, 193-198.	3.9	13
87	Hybrid electrochromic film based on polyaniline and TiO 2 nanorods array. Organic Electronics, 2014, 15, 2702-2709.	2.6	65
88	Effects of different solvent baths on the performances of dye-sensitized solar cells: Experimental and theoretical investigation. Organic Electronics, 2014, 15, 2240-2249.	2.6	12
89	A novel electrochromic and broad infrared emissivity modulation film based on the copolymer of aniline and o-anisidine. Electrochimica Acta, 2013, 88, 322-329.	5.2	36
90	Novel organic dye employing dithiafulvenyl-substituted arylamine hybrid donor unit for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2132-2138.	2.6	32

#	Article	IF	CITATIONS
91	Effect of imidazole derivatives in triphenylamine-based organic dyes for dye-sensitized solar cells. Organic Electronics, 2013, 14, 1755-1762.	2.6	37
92	Phenothiazine–triphenylamine based organic dyes containing various conjugated linkers for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 25140.	6.7	120
93	Langmuir–Blodgett (LB) films of novel tetrathiafulvalene derivative containing diamino group. Synthetic Metals, 2012, 162, 54-57.	3.9	4
94	Triphenylamine-based organic dyes containing benzimidazole derivatives for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 743-750.	3.7	34
95	Influence of the antennas in starburst triphenylamine-based organic dye-sensitized solar cells: phenothiazine versus carbazole. RSC Advances, 2012, 2, 4507.	3.6	43
96	Highly conjugated donorâ \in "acceptor dyad based on tetrathiafulvalene covalently attached to porphyrin unit. Dyes and Pigments, 2012, 93, 1456-1462.	3.7	18
97	Effects of different acceptors in phenothiazine-triphenylamine dyes on the optical, electrochemical, and photovoltaic properties. Dyes and Pigments, 2012, 94, 150-155.	3.7	43
98	Synthesis, physical properties and self-assembly of conjugated donor–acceptor system based on tetrathiafulvalene and functionalized with binding sites. Dyes and Pigments, 2012, 94, 403-409.	3.7	14
99	Influence of different arylamine electron donors in organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 41-46.	3.7	41
100	Theoretical study of carbazole–triphenylamine-based dyes for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 387-391.	3.9	36
101	Triphenylamine-based starburst dyes with carbazole and phenothiazine antennas for dye-sensitized solar cells. Journal of Power Sources, 2012, 199, 426-431.	7.8	83
102	Structure-property relationships in conjugated donor–acceptor systems functionalized with tetrathiafulvalene. New Journal of Chemistry, 2011, 35, 1876.	2.8	8
103	Study on poly-O-anisidine film with the properties of electrochromism and infrared emissivity modulation. Synthetic Metals, 2011, 161, 2045-2048.	3.9	16
104	A Novel Conjugated Donor-Acceptor System Based on Tetrathiafulvalene Merging Pyrene Unit: Synthesis, Physical Properties and Theoretical Calculations. Heterocycles, 2011, 83, 1527.	0.7	4
105	An Experimental and Computational Study on Intramolecular Charge Transfer: A Tetrathiafulvalene-Fused Dipyridophenazine Molecule. Chemistry - A European Journal, 2007, 13, 3804-3812.	3.3	172
106	A redox-active tri-star molecule: merging of TTF and HAT chemistry. Chemical Communications, 2006, , 1878.	4.1	69
107	Self-Assembled Hydrophobic Molecule-Based Surface Modification: A Strategy to Improve Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	2