Dominique Bonnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6344714/publications.pdf

Version: 2024-02-01

218381 1,944 69 26 citations h-index papers

41 g-index 74 74 74 2963 docs citations times ranked citing authors all docs

276539

#	Article	IF	CITATIONS
1	Convenient Method To Access New 4,4-Dialkoxy- and 4,4-Diaryloxy-diaza-s-indacene Dyes:Â Synthesis and Spectroscopic Evaluation. Journal of Organic Chemistry, 2007, 72, 269-272.	1.7	152
2	Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood, 2012, 119, 5722-5730.	0.6	105
3	Identification and pharmacological properties of E339–3D6, the first nonpeptidic apelin receptor agonist. FASEB Journal, 2010, 24, 1506-1517.	0.2	95
4	Biased Agonist Pharmacochaperones of the AVP V2 Receptor May Treat Congenital Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2009, 20, 2190-2203.	3.0	93
5	Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging. Journal of the American Chemical Society, 2015, 137, 405-412.	6.6	87
6	Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12. Journal of Biological Chemistry, 2008, 283, 23189-23199.	1.6	85
7	Push–pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand–receptor interactions. Journal of Materials Chemistry C, 2016, 4, 3002-3009.	2.7	77
8	α5β1 integrin antagonists reduce chemotherapyâ€induced premature senescence and facilitate apoptosis in human glioblastoma cells. International Journal of Cancer, 2010, 127, 1240-1248.	2.3	65
9	Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovascular Research, 2020, 116, 686-697.	1.8	54
10	Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V ₂ GPCR: Application To Ligand Screening and Oligomerization Assays Journal of Medicinal Chemistry, 2012, 55, 8588-8602.	2.9	52
11	Solid-Phase Synthesis of Tetrahydro-β-carbolinehydantoins via the N-Acyliminium Pictetâ°'Spengler Reaction and Cyclative Cleavage. ACS Combinatorial Science, 2002, 4, 546-548.	3.3	50
12	Development of original metabolically stable apelinâ€17 analogs with diuretic and cardiovascular effects. FASEB Journal, 2017, 31, 687-700.	0.2	48
13	Red Fluorescent Turnâ€On Ligands for Imaging and Quantifying G Proteinâ€Coupled Receptors in Living Cells. ChemBioChem, 2014, 15, 359-363.	1.3	47
14	Squaraine as a bright, stable and environment-sensitive far-red label for receptor-specific cellular imaging. Chemical Communications, 2015, 51, 2960-2963.	2.2	47
15	Time-Resolved FRET Binding Assay to Investigate Hetero-Oligomer Binding Properties: Proof of Concept with Dopamine D ₁ /D ₃ Heterodimer. ACS Chemical Biology, 2015, 10, 466-474.	1.6	39
16	A Rapid and Versatile Method to Label Receptor Ligands Using "Click―Chemistry: Validation with the Muscarinic M1 Antagonist Pirenzepine. Bioconjugate Chemistry, 2006, 17, 1618-1623.	1.8	36
17	Solid-Phase Preparation of a Pilot Library Derived from the 2,3,4,5-Tetrahydro-1H-benzo[b]azepin-5-amine Scaffold. ACS Combinatorial Science, 2007, 9, 487-500.	3.3	33
18	Fluorescent Derivatives of AC-42 To Probe Bitopic Orthosteric/Allosteric Binding Mechanisms on Muscarinic M1 Receptors. Journal of Medicinal Chemistry, 2012, 55, 2125-2143.	2.9	33

#	Article	IF	Citations
19	LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. Journal of Medicinal Chemistry, 2018, 61, 8670-8692.	2.9	33
20	An Antedrug of the CXCL12 Neutraligand Blocks Experimental Allergic Asthma without Systemic Effect in Mice. Journal of Biological Chemistry, 2013, 288, 11865-11876.	1.6	32
21	Solid-Phase Functionalization of Peptides by an α-Hydrazinoacetyl Group. Journal of Organic Chemistry, 2003, 68, 7033-7040.	1.7	31
22	Chemoselective Acylation of Fully Deprotected Hydrazino Acetyl Peptides. Application to the Synthesis of Lipopeptides. Journal of Organic Chemistry, 2001, 66, 443-449.	1.7	30
23	Involvement of the TGFβ pathway in the regulation of α ₅ β ₁ integrins by caveolinâ€1 in human glioblastoma. International Journal of Cancer, 2012, 131, 601-611.	2.3	29
24	Neutralizing endogenous chemokines with small molecules. , 2010, 126, 39-55.		28
25	Structure–Activity Relationship Studies toward the Discovery of Selective Apelin Receptor Agonists. Journal of Medicinal Chemistry, 2014, 57, 2908-2919.	2.9	27
26	New Fluorescein Precursors for Live Bacteria Detection. Analytical Chemistry, 2015, 87, 8858-8866.	3.2	27
27	Solidâ€Phase Organic Tagging Resins for Labeling Biomolecules by 1,3â€Dipolar Cycloaddition: Application to the Synthesis of a Fluorescent Nonâ€Peptidic Vasopressin Receptor Ligand. Chemistry - A European Journal, 2008, 14, 6247-6254.	1.7	26
28	Prodrugs of a CXC Chemokine-12 (CXCL12) Neutraligand Prevent Inflammatory Reactions in an Asthma Model in Vivo. ACS Medicinal Chemistry Letters, 2012, 3, 10-14.	1.3	26
29	Combinatorial Aid for Underprivileged Scaffolds: Solution and Solid-phase Strategies for a Rapid and Efficient Access To Novel Aza-diketopiperazines (Aza-DKP). ACS Combinatorial Science, 2012, 14, 323-334.	3.8	26
30	Discovery of a Locally and Orally Active CXCL12 Neutraligand (LIT-927) with Anti-inflammatory Effect in a Murine Model of Allergic Airway Hypereosinophilia. Journal of Medicinal Chemistry, 2018, 61, 7671-7686.	2.9	26
31	Simultaneous Lipidation of a Characterized Peptide Mixture by Chemoselective Ligation. Bioconjugate Chemistry, 2003, 14, 494-499.	1.8	25
32	Exploration of the Orthosteric/Allosteric Interface in Human M1 Muscarinic Receptors by Bitopic Fluorescent Ligands. Molecular Pharmacology, 2013, 84, 71-85.	1.0	24
33	A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Scientific Reports, 2015, 5, 14746.	1.6	22
34	Chemoselective acylation of hydrazinopeptides: a novel and mild method for the derivatization of peptides with sensitive fatty acids. Tetrahedron Letters, 2000, 41, 45-48.	0.7	19
35	Selective Nonpeptidic Fluorescent Ligands for Oxytocin Receptor: Design, Synthesis, and Application to Time-Resolved FRET Binding Assay. Journal of Medicinal Chemistry, 2015, 58, 2547-2552.	2.9	19
36	Two distinct CXCR4 antagonists mobilize progenitor cells in mice by different mechanisms. Blood Advances, 2017, 1, 1934-1943.	2.5	19

#	Article	IF	CITATIONS
37	Use of a fluorescent polarization based high throughput assay to identify new Calmodulin ligands. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1250-1255.	1.9	18
38	Synthesis of hydrazinopeptides using solid-phase N -electrophilic amination: extension to the Fmoc/tert -butyl strategy and chemistry of the N-N bond in strong acid media. Chemical Biology and Drug Design, 1999, 54, 270-278.	1.2	17
39	Diastereoselective synthesis of novel aza-diketopiperazines <i>via</i> a domino cyclohydrocarbonylation/addition process. Chemical Communications, 2014, 50, 9657-9660.	2.2	15
40	A near-infrared fluorogenic dimer enables background-free imaging of endogenous GPCRs in living mice. Chemical Science, 2020, 11, 6824-6829.	3.7	15
41	A metabolically stable apelin-17 analog decreases AVP-induced antidiuresis and improves hyponatremia. Nature Communications, 2021, 12, 305.	5.8	15
42	A novel lipophilic glyoxylic acid derivative for the lipidation of peptides using salt-free hydrazone ligation. Tetrahedron Letters, 2000, 41, 10003-10007.	0.7	14
43	Synthesis by Chemoselective Ligation and Biological Evaluation of Novel Cell-Permeable PKC-ζ Pseudosubstrate Lipopeptides. Journal of Medicinal Chemistry, 2001, 44, 468-471.	2.9	14
44	From the Promiscuous Asenapine to Potent Fluorescent Ligands Acting at a Series of Aminergic G-Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2018, 61, 174-188.	2.9	13
45	A novel and mild solid phase hydroperoxydeamination reaction. Tetrahedron Letters, 1999, 40, 7315-7318.	0.7	12
46	Homodimerization of the Death-Associated Protein Kinase Catalytic Domain: Development of a New Small Molecule Fluorescent Reporter. PLoS ONE, 2010, 5, e14120.	1.1	12
47	Nile Red-Based GPCR Ligands as Ultrasensitive Probes of the Local Lipid Microenvironment of the Receptor. ACS Chemical Biology, 2021, 16, 651-660.	1.6	12
48	Inhibition of farnesyl protein transferase by new farnesyl phosphonate derivatives of phenylalanine. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1291-1296.	1.0	11
49	Synthesis of an amphiphilic aldehyde using as a key step the condensation of a lipophilic glyoxylic acid amide derivative with tris(hydroxymethyl)aminomethane. Tetrahedron Letters, 2001, 42, 1875-1877.	0.7	10
50	A Timeâ€Resolved FRET Cellâ€Based Binding Assay for the Apelin Receptor. ChemMedChem, 2017, 12, 925-931.	1.6	10
51	Convenient Access to Fluorescent Probes by Chemoselective Acylation of Hydrazinopeptides: Application to the Synthesis of the First Farâ€Red Ligand for Apelin Receptor Imaging. Chemistry - A European Journal, 2016, 22, 1399-1405.	1.7	9
52	A step-economical multicomponent synthesis of 3D-shaped aza-diketopiperazines and their drug-like chemical space analysis. Organic and Biomolecular Chemistry, 2016, 14, 8859-8863.	1.5	9
53	Efficient preparation of carbohydrate- and related polyol-amphiphiles by hydrazone ligation. Tetrahedron Letters, 2004, 45, 3451-3454.	0.7	7
54	Comparative Study of the Synthesis and Structural and Physicochemical Properties of Diketopiperazines vs Aza-diketopiperazines. Journal of Organic Chemistry, 2017, 82, 3239-3244.	1.7	7

#	Article	IF	CITATIONS
55	Decreased Migration of Dendritic Cells into the Jugular-Nodose Ganglia by the CXCL12 Neutraligand Chalcone 4 in Ovalbumin-Sensitized Asthmatic Mice. NeuroImmunoModulation, 2017, 24, 331-340.	0.9	6
56	Pharmacological tools to mobilise mesenchymal stromal cells into the blood promote bone formation after surgery. Npj Regenerative Medicine, 2020, 5, 3.	2.5	6
57	LITO1-196, a Metabolically Stable Apelin-17 Analog, Normalizes Blood Pressure in Hypertensive DOCA-Salt Rats via a NO Synthase-dependent Mechanism. Frontiers in Pharmacology, 2021, 12, 715095.	1.6	6
58	Functional Rescue of a Nephrogenic Diabetes Insipidus Causing Mutation in the V2 Vasopressin Receptor by Specific Antagonist and Agonist Pharmacochaperones. Frontiers in Pharmacology, 2022, 13, 811836.	1.6	6
59	Reactivity of Lys(NH2)-containing peptides toward endopeptidases. , 1999, 5, 352-359.		5
60	Increasing cellular immunogenicity to peptide-based vaccine candidates using a fluorocarbon antigen delivery system. Vaccine, 2015, 33, 1071-1076.	1.7	5
61	Versatile Synthetic Approach for Selective Diversification of Bicyclic Aza-Diketopiperazines. ACS Omega, 2018, 3, 15182-15192.	1.6	4
62	Endocyclic Enamides Derived from Azaâ€Diketopiperazines as Olefin Partners in Povarov Reaction: An Access to Tetracyclic Nâ€Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 7385-7395.	1.2	4
63	Time-Resolved FRET-Based Assays to Characterize G Protein-Coupled Receptor Hetero-oligomer Pharmacology. Methods in Molecular Biology, 2019, 1947, 151-168.	0.4	3
64	Selfâ€organization Properties of a GPCRâ€Binding Peptide with a Fluorinated Tail Studied by Fluorine NMR Spectroscopy. ChemBioChem, 2021, 22, 657-661.	1.3	3
65	A Selective Neutraligand for CXCL12/SDF-1α With Beneficial Regulatory Functions in MRL/Lpr Lupus Prone Mice. Frontiers in Pharmacology, 2021, 12, 752194.	1.6	3
66	Three cheers for nitrogen: aza-DKPs, the aza analogues of 2,5-diketopiperazines. RSC Advances, 2020, 10, 43358-43370.	1.7	3
67	Effect of Glycoamphiphiles on the Solubilization and Dendritic Cell Uptake of a Lipopeptide:  A Preliminary Study. Molecular Pharmaceutics, 2005, 2, 420-427.	2.3	2
68	Chemoselective Acylation of Hydrazinopeptides to Access Fluorescent Probes for Time-Resolved FRET Assays on GPCRs. Methods in Molecular Biology, 2019, 1947, 137-147.	0.4	0
69	Neutralization of CXCL12 reverses established pulmonary hypertension in the sugen-hypoxia rat model. , 2017, , .		O