Pablo M Arnal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6344646/publications.pdf

Version: 2024-02-01

933447 996975 1,774 17 10 citations h-index papers

g-index 22 22 22 2322 all docs docs citations times ranked citing authors

15

#	Article	IF	CITATIONS
1	High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation. Angewandte Chemie - International Edition, 2006, 45, 8224-8227.	13.8	624
2	Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties. Chemistry of Materials, 2006, 18, 2733-2739.	6.7	183
3	Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal of Hazardous Materials, 2010, 177, 711-718.	12.4	167
4	Yolkâ€Shell Gold Nanoparticles as Model Materials for Supportâ€Effect Studies in Heterogeneous Catalysis: Au, @C and Au, @ZrO ₂ for CO Oxidation as an Example. Chemistry - A European Journal, 2011, 17, 8434-8439.	3.3	107
5	Highly microporous monodisperse silica spheres synthesized by the St $\tilde{A}\P$ ber process. Microporous and Mesoporous Materials, 2014, 200, 317-325.	4.4	40
6	Biocompatibility of core@shell particles: Cytotoxicity and genotoxicity in human osteosarcoma cells of colloidal silica spheres coated with crystalline or amorphous zirconia. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 770, 85-94.	1.7	18
7	Poly($\langle i \rangle$ o $\langle i \rangle$ -aminophenol) film electrodes: synthesis and characterization and formation mechanisms $\hat{a} \in \mathcal{C}$ A review article. Canadian Journal of Chemistry, 2013, 91, 91-112.	1.1	16
8	Electrosynthesis and Spectroscopic Characterization of Poly(o-Aminophenol) Film Electrodes. ISRN Polymer Science, 2012, 2012, 1-26.	0.3	15
9	Zeolitic Core@Shell Adsorbents for the Selective Removal of Free Glycerol from Crude Biodiesel. ChemSusChem, 2015, 8, 2093-2105.	6.8	13
10	Copper complex with sulfamethazine and $2,2\hat{a}\in^2$ -bipyridine supported on mesoporous silica microspheres improves its antitumor action toward human osteosarcoma cells: cyto- and genotoxic effects. BioMetals, 2019, 32, 21-32.	4.1	10
11	A new synthesis pathway for colloidal silica spheres coated with crystalline titanium oxide and its comparative cyto- and genotoxic study with titanium oxide nanoparticles in rat osteosarcoma (UMR106) cells. Journal of Colloid and Interface Science, 2013, 394, 147-156.	9.4	5
12	Titania hollow spheres modified with tungstophosphoric acid with enhanced visible light absorption for the photodegradation of 4-chlorophenol. Photochemical and Photobiological Sciences, 2017, 16, 46-52.	2.9	3
13	Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal. MethodsX, 2015, 2, 198-203.	1.6	1
14	Synthesis of microporous/mesoporous core–shell materials with crystalline zeolitic shell and supported metal oxide silica core. CrystEngComm, 2016, 18, 4452-4464.	2.6	1
15	Green chemical synthesis for well-defined and sharply distributed SiO2@FexOy particles. Journal of Sol-Gel Science and Technology, 2021, 98, 541-548.	2.4	0
16	Rapid removal of fluoride from water using core@shell and @shell nanoparticles of SiO2@ZrO2 and @ZrO2. Investigation of the mechanisms involved and impact of elemental leaching. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 576-584.	1.9	0
17	Conversion of Wood into Hierarchically Porous Charcoal in the 200â€gramâ€scale using Homeâ€built Kiln**. Chemistry Methods, 2021, 1, 477.	3.8	0