Lucian Medrihan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6344408/publications.pdf

Version: 2024-02-01

331259 552369 1,646 28 21 26 h-index citations g-index papers 33 33 33 3091 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Molecular Psychiatry, 2021, 26, 2334-2349.	4.1	33
2	Activation of the p11/SMARCA3/Neurensin-2 pathway in parvalbumin interneurons mediates the response to chronic antidepressants. Molecular Psychiatry, 2021, 26, 3350-3362.	4.1	7
3	Identification of Neurensin-2 as a novel modulator of emotional behavior. Molecular Psychiatry, 2021, 26, 2872-2885.	4.1	11
4	Activation of the p11 Pathway by Antidepressants Induce AMPA Signaling. Biological Psychiatry, 2021, 89, S304.	0.7	0
5	Ahnak scaffolds p11/Anxa2 complex and L-type voltage-gated calcium channel and modulates depressive behavior. Molecular Psychiatry, 2020, 25, 1035-1049.	4.1	41
6	Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Molecular Psychiatry, 2020, 25, 1191-1201.	4.1	30
7	Reduced Kv3.1 Activity in Dentate Gyrus Parvalbumin Cells Induces Vulnerability to Depression. Biological Psychiatry, 2020, 88, 405-414.	0.7	29
8	The Knockout of Synapsin II in Mice Impairs Social Behavior and Functional Connectivity Generating an ASD-like Phenotype. Cerebral Cortex, 2017, 27, 5014-5023.	1.6	43
9	Initiation of Behavioral Response to Antidepressants by Cholecystokinin Neurons of the Dentate Gyrus. Neuron, 2017, 95, 564-576.e4.	3.8	49
10	Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Scientific Reports, 2017, 7, 16825.	1.6	63
11	2â€Deoxyâ€ <scp>d</scp> â€glucose enhances tonic inhibition through the neurosteroidâ€mediated activation of extrasynaptic <scp>GABA</scp> _A receptors. Epilepsia, 2016, 57, 1987-2000.	2.6	34
12	Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated sodium channels. Journal of Cell Science, 2016, 129, 1878-91.	1.2	23
13	Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 734-739.	3.3	42
14	Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II ^{â^²/â^²} Mouse. Cerebral Cortex, 2015, 25, 3356-3368.	1.6	41
15	TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology, 2015, 40, 2217-2227.	2.8	98
16	Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell, 2015, 17, 719-734.	5.2	152
17	Remote control of induced dopaminergic neurons in parkinsonian rats. Journal of Clinical Investigation, 2014, 124, 3215-3229.	3.9	104
18	Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nature Communications, 2013, 4, 1512.	5.8	87

#	Article	lF	CITATION
19	Synaptic and Extrasynaptic Origin of the Excitation/Inhibition Imbalance in the Hippocampus of Synapsin I/II/III Knockout Mice. Cerebral Cortex, 2013, 23, 581-593.	1.6	65
20	Dentate gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of seizures. Frontiers in Cellular Neuroscience, 2013, 7, 138.	1.8	22
21	Synaptic Competition Sculpts the Development of GABAergic Axo-Dendritic but Not Perisomatic Synapses. PLoS ONE, 2013, 8, e56311.	1.1	15
22	Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death and Differentiation, 2012, 19, 194-208.	5.0	62
23	5-HT ₇ R/G ₁₂ Signaling Regulates Neuronal Morphology and Function in an Age-Dependent Manner. Journal of Neuroscience, 2012, 32, 2915-2930.	1.7	107
24	Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Frontiers in Neural Circuits, 2012, 6, 80.	1.4	85
25	Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. Journal of Physiology, 2009, 587, 5095-5106.	1.3	69
26	Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biology, 2008, 6, 37.	1.7	129
27	Early Defects of GABAergic Synapses in the Brain Stem of a MeCP2 Mouse Model of Rett Syndrome. Journal of Neurophysiology, 2008, 99, 112-121.	0.9	202
28	Molecular and Cellular Adaptations in Hippocampal Parvalbumin Neurons Mediate Behavioral Responses to Chronic Social Stress. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	3