
Xiuzhu Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6344054/publications.pdf Version: 2024-02-01

Хштрни Ун

#	Article	IF	CITATIONS
1	Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Critical Reviews in Food Science and Nutrition, 2023, 63, 4901-4915.	5.4	14
2	Effect of hydrophilic groups in lipids on the characteristics of starch–lipid complexes. International Journal of Food Science and Technology, 2023, 58, 4862-4871.	1.3	3
3	Role of Capping Agent for the Colorimetric and Fluorescent Sensing of Different Materials Using Metal Nanoparticles. Current Analytical Chemistry, 2022, 18, 186-195.	0.6	1
4	Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties. Food Chemistry, 2022, 372, 131240.	4.2	32
5	Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chemistry, 2022, 369, 130895.	4.2	35
6	Physicochemical, sensorial and microcosmic properties of Chinese dried noodles fortified with unhulled and hulled flaxseed flour. International Journal of Food Science and Technology, 2022, 57, 676-683.	1.3	4
7	New Method for the Determination of the Induction Period of Walnut Oil by Fourier Transform Infrared Spectroscopy. Food Analytical Methods, 2022, 15, 833-843.	1.3	4
8	Convenient method for the simultaneous production of high-quality fragrant rapeseed oil and recovery of phospholipids via electrolyte degumming. LWT - Food Science and Technology, 2022, 155, 112947.	2.5	8
9	Investigation of the effects of lights, temperatures and packaging materials on the virgin rapeseed oil flavors during storage. LWT - Food Science and Technology, 2022, 157, 113089.	2.5	5
10	Effect of water content on the physical properties and structure of walnut oleogels. RSC Advances, 2022, 12, 8987-8995.	1.7	13
11	Fortification of Chinese steamed bread with flaxseed flour and evaluation of its physicochemical and sensory properties. Food Chemistry: X, 2022, 13, 100267.	1.8	8
12	Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). Food Bioscience, 2022, 47, 101624.	2.0	15
13	Key volatile compound formation of rapeseed oil induced via the Maillard reaction during seed roasting. Food Chemistry, 2022, 388, 132992.	4.2	15
14	Utilization of Diaphragma juglandis extract as a natural antioxidant for improving the oxidative stability of soybean oil during deep frying. Food Chemistry: X, 2022, 14, 100359.	1.8	4
15	Comparison of nonâ€volatile degradation products formed from different vegetable oils during deep frying of French fries. International Journal of Food Science and Technology, 2022, 57, 6763-6772.	1.3	3
16	The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry, 2021, 335, 127655.	4.2	93
17	Characterisation of amylose and amylopectin with various moisture contents after frying process: effect of starch–lipid complex formation. International Journal of Food Science and Technology, 2021, 56, 639-647.	1.3	11
18	Polar compound composition of four vegetable oils as affected by tertâ€butylhydroquinone (TBHQ) and chlorophyll during roomâ€temperature storage. International Journal of Food Science and Technology, 2021, 56, 1886-1895.	1.3	2

#	Article	IF	CITATIONS
19	New Method Based on Zone Melting for Determining Wax Content in Sunflower Oils. Food Analytical Methods, 2021, 14, 503-511.	1.3	0
20	Functional Properties and Structural Characteristics of Starch–Fatty Acid Complexes Prepared at High Temperature. Journal of Agricultural and Food Chemistry, 2021, 69, 9076-9085.	2.4	28
21	Physicochemical Characteristics and Functional Properties of Seed Oil from Four Different Cultivars of S. Wilsoniana. European Journal of Lipid Science and Technology, 2021, 123, 2100020.	1.0	2
22	Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chemistry, 2021, 358, 129834.	4.2	58
23	Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydrate Polymers, 2021, 272, 118481.	5.1	41
24	Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour. Journal of Cereal Science, 2021, 102, 103330.	1.8	10
25	The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chemistry, 2021, 364, 130451.	4.2	39
26	Characterization of Differences in Flavor in Virgin Rapeseed Oils by Using Gas Chromatography–Mass Spectrometry, Electronic Nose, and Sensory Analysis. European Journal of Lipid Science and Technology, 2020, 122, 1900205.	1.0	23
27	Salt-assisted aqueous extraction combined with Span 20 allow the obtaining of a high-quality and yield walnut oil. LWT - Food Science and Technology, 2020, 121, 108956.	2.5	13
28	Influence of flaxseed flour as a partial replacement for wheat flour on the characteristics of Chinese steamed bread. RSC Advances, 2020, 10, 28114-28120.	1.7	15
29	An indirect analytical approach based on ATR-FTIR spectroscopy for determining the FFA content in vegetable oils. RSC Advances, 2020, 10, 24073-24078.	1.7	3
30	Morphology, structural, thermal and rheological properties of wheat starch–palmitic acid complexes prepared during steam cooking. RSC Advances, 2020, 10, 30087-30093.	1.7	10
31	Impact of linolenic acid on oxidative stability of rapeseed oils. Journal of Food Science and Technology, 2020, 57, 3184-3192.	1.4	29
32	Comparative study on the evolution of polar compound composition of four common vegetable oils during different oxidation processes. LWT - Food Science and Technology, 2020, 129, 109538.	2.5	21
33	Investigation on food packaging polymers: Effects on vegetable oil oxidation. Food Chemistry, 2020, 315, 126299.	4.2	21
34	Analysis of Reaction Kinetics of Edible Oil Oxidation at Ambient Temperature by FTIR Spectroscopy. European Journal of Lipid Science and Technology, 2020, 122, 1900302.	1.0	3
35	Influence of seed roasting on the quality of glucosinolate content and flavor in virgin rapeseed oil. LWT - Food Science and Technology, 2020, 126, 109301.	2.5	40
36	Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 3597-3611.	5.4	39

#	Article	IF	CITATIONS
37	Traditional Tibetan Ghee: Physicochemical Characteristics and Fatty Acid Composition. Journal of Oleo Science, 2019, 68, 827-835.	0.6	13
38	A mini review of nervonic acid: Source, production, and biological functions. Food Chemistry, 2019, 301, 125286.	4.2	66
39	New Method for the Discrimination of Adulterated Flaxseed Oil Using Dielectric Spectroscopy. Food Analytical Methods, 2019, 12, 2623-2629.	1.3	14
40	Corrosion Behavior of Bitter Almond Oil During Processing. European Journal of Lipid Science and Technology, 2019, 121, 1900210.	1.0	1
41	Authentication of <i>Eucommia ulmoides</i> Seed Oil Using Fourier Transform Infrared and Synchronous Fluorescence Spectroscopy Combined with Chemometrics. Journal of Oleo Science, 2019, 68, 1073-1084.	0.6	6
42	Relationship of Glucosinolate Thermal Degradation and Roasted Rapeseed Oil Volatile Odor. Journal of Agricultural and Food Chemistry, 2019, 67, 11187-11197.	2.4	36
43	Rapid Determination of Acid Value of Edible Oils via FTIR Spectroscopy Using Infrared Quartz Cuvette. Journal of Oleo Science, 2019, 68, 121-129.	0.6	8
44	Reduction of cyanide content of bitter almond and its oil using different treatments. International Journal of Food Science and Technology, 2019, 54, 3083-3090.	1.3	10
45	Effects of packaging materials on oxidative product formation in vegetable oils: Hydroperoxides and volatiles. Food Packaging and Shelf Life, 2019, 21, 100328.	3.3	11
46	Analysis of Edible Oil Oxidation Based on Changes in the Electrical Conductivity of the Extracted Aqueous Phase. European Journal of Lipid Science and Technology, 2019, 121, 1800441.	1.0	9
47	Quality assessment of packaged fried foods during storage based on oven storage test. International Journal of Food Science and Technology, 2019, 54, 558-566.	1.3	1
48	Rapid and Simultaneous Determination of the Iodine Value and Saponification Number of Edible Oils by FTIR Spectroscopy. European Journal of Lipid Science and Technology, 2018, 120, 1700396.	1.0	18
49	Preparation and Characterization of Hydrogenated Castor Oil-Based Coating Wax. European Journal of Lipid Science and Technology, 2018, 120, 1700444.	1.0	4
50	Combination of Span 20 and pH-assisted walnut oil extraction during aqueous extraction process. LWT - Food Science and Technology, 2018, 91, 477-483.	2.5	18
51	Simple Determination of Diacylglycerols Using Thin Layer Chromatography and Visible Spectrophotometry. Food Analytical Methods, 2018, 11, 236-242.	1.3	21
52	Determination of Total Polar Compounds in Frying Oils by PEâ€Filmâ€Based FTIR and ATRâ€FTIR Spectroscopy. European Journal of Lipid Science and Technology, 2018, 120, 1800250.	1.0	16
53	An Improved Method for Determination of Cyanide Content in Bitter Almond Oil. Journal of Oleo Science, 2018, 67, 289-294.	0.6	2
54	Authentication and adulteration detection of peanut oils of three flavor types using synchronous fluorescence spectroscopy. Analytical Methods, 2018, 10, 3207-3214.	1.3	18

#	Article	IF	CITATIONS
55	A simple and practical method to determine peroxide values in edible oils <i>via</i> infrared quartz cuvette-based Fourier transform infrared spectroscopy. Analytical Methods, 2018, 10, 3675-3679.	1.3	9
56	Efficient Detection of Edible Oils Adulterated with Used Frying Oils through PE-film-based FTIR Spectroscopy Combined with DA and PLS. Journal of Oleo Science, 2018, 67, 1083-1089.	0.6	12
57	Rapid Determination of Amino Acids in Chinese Wolfberry (Lycium bararum L.) Fruit by Using Fourier Transform Infrared Spectroscopy and Partial Least Square Regression. Food Analytical Methods, 2017, 10, 2436-2443.	1.3	12
58	Efficient saltâ€ e ided aqueous extraction of bitter almond oil. Journal of the Science of Food and Agriculture, 2017, 97, 3814-3821.	1.7	14
59	Novel method for the producing area identification of Zhongning Goji berries by electronic nose. Food Chemistry, 2017, 221, 1113-1119.	4.2	63
60	A novel method to determine total sugar of Goji berry using FT-NIR spectroscopy with effective wavelength selection. International Journal of Food Properties, 2017, 20, S478-S488.	1.3	9
61	Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. International Journal of Food Properties, 2017, 20, S2926-S2938.	1.3	105
62	Novel method based on fourier transform infrared spectroscopy for determining fat acidity of cereal products. International Journal of Food Properties, 2017, 20, S2846-S2855.	1.3	2
63	Simple Synthesis Hydrogenated Castor Oil Fatty Amide Wax and Its Coating Characterization. Journal of Oleo Science, 2017, 66, 659-665.	0.6	6
64	Determination of Peroxide Values of Edible Oils by Ultraviolet Spectrometric Method. Food Analytical Methods, 2016, 9, 1412-1417.	1.3	11
65	A Novel Method of Determining Wax Cohesiveness by Using A Texture Analyzer. Journal of Texture Studies, 2016, 47, 161-166.	1.1	5
66	A rapid method for evaluating the edible oil oxidative stability during ambient storage by FTIR spectroscopy using a mesh cell. Analytical Methods, 2016, 8, 5117-5122.	1.3	13
67	A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chemistry, 2016, 202, 229-235.	4.2	148
68	Rapid Determination of Lycium Barbarum Polysaccharide with Effective Wavelength Selection Using Near-Infrared Diffuse Reflectance Spectroscopy. Food Analytical Methods, 2016, 9, 131-138.	1.3	17
69	Optimized Transesterification for Diacylglycerol in Rapeseed Oil Using Response Surface Methodology Basing on FT-IR Spectroscopy. American Journal of Food Technology, 2016, 11, 143-151.	0.2	0
70	A Novel Process for the Aqueous Extraction of Linseed Oil Based on Nitrogen Protection. Advance Journal of Food Science and Technology, 2015, 9, 606-613.	0.1	4
71	Determination of Polar Components in Frying Oils by Fourier-Transform Near-Infrared Spectroscopy. Journal of Oleo Science, 2015, 64, 255-261.	0.6	16
72	Determination of the peroxide value of edible oils by FTIR spectroscopy using polyethylene films. Analytical Methods, 2015, 7, 1727-1731.	1.3	19

#	Article	IF	CITATIONS
73	Direct FTIR Analysis of Free Fatty Acids in Edible Oils Using Disposable Polyethylene Films. Food Analytical Methods, 2015, 8, 857-863.	1.3	43
74	Direct FTIR analysis of isolated trans fatty acids in edible oils using disposable polyethylene film. Food Chemistry, 2015, 185, 503-508.	4.2	17
75	A novel approach to discriminate Lycium barbarum from the Zhongning area using FT-IR spectroscopy and chemometrics. Analytical Methods, 2015, 7, 9108-9113.	1.3	10
76	Qualitative analysis of edible oil oxidation by FTIR spectroscopy using a mesh "cell― Analytical Methods, 2015, 7, 4328-4333.	1.3	20
77	Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 2014, 55, 308-313.	2.5	234
78	A novel method for determining peroxide value of edible oils using electrical conductivity. Food Control, 2014, 39, 198-203.	2.8	29
79	Application of Fourier transform near-infrared spectroscopy to the quantification and monitoring of carbonyl value in frying oils. Analytical Methods, 2014, 6, 7628-7633.	1.3	11
80	A New Method for Determining Free Fatty Acid Content in Edible Oils by Using Electrical Conductivity. Food Analytical Methods, 2012, 5, 1453-1458.	1.3	8
81	Impact of Potato Chips Frying on the Quality Characteristics of Rapeseed Oil. International Journal of Food Engineering, 2011, 7, .	0.7	0
82	A new direct Fourier transform infrared analysis of free fatty acids in edible oils using spectral reconstitution. Analytical and Bioanalytical Chemistry, 2011, 401, 315-324.	1.9	23
83	Automated and Simultaneous Determination of Free Fatty Acids and Peroxide Values in Edible Oils by FTIR Spectroscopy Using Spectral Reconstitution. Analytical Sciences, 2009, 25, 627-632.	0.8	26
84	Determination of Free Fatty Acids in Edible Oils with the Use of a Variable Filter Array IR Spectrometer. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 599-604.	0.8	25
85	Proximate Composition of the Apple Seed and Characterization of Its Oil. International Journal of Food Engineering, 2007, 3, .	0.7	30
86	Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique. Talanta, 2007, 74, 241-246.	2.9	49
87	Functional Properties and Composition of New "Nut―Oil Obtained from Xanthium sibiricum Seeds. European Journal of Lipid Science and Technology, 0, , 2100135.	1.0	0
88	New Method Based on Polarity Reversal for Detecting Adulteration of Extra Virgin Olive Oil with Refined Olive Pomace Oil. European Journal of Lipid Science and Technology, 0, , 2100193.	1.0	0