
Xingang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6343683/publications.pdf Version: 2024-02-01

XINCANC LUI

#	Article	IF	CITATIONS
1	Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmospheric Environment, 2018, 192, 55-71.	4.1	214
2	VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Science of the Total Environment, 2019, 650, 2624-2639.	8.0	169
3	Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign. Atmospheric Environment, 2008, 42, 1525-1536.	4.1	168
4	Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmospheric Research, 2015, 155, 192-203.	4.1	168
5	Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 2018, 115, 343-357.	10.0	158
6	Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environmental Pollution, 2020, 257, 113599.	7.5	146
7	Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management, 2009, 90, 3231-3244.	7.8	145
8	Characteristics and source apportionment of PM 2.5 during persistent extreme haze events in Chengdu, southwest China. Environmental Pollution, 2017, 230, 718-729.	7.5	126
9	The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Science of the Total Environment, 2015, 505, 306-314.	8.0	124
10	Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmospheric Environment, 2016, 124, 378-386.	4.1	120
11	Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 2014, 99, 257-265.	4.1	117
12	Source Apportionment and Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu, Southwest China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9741-9763.	3.3	108
13	Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2508-2521.	3.3	93
14	Research on the hygroscopic properties of aerosols by measurement and modeling during CAREBeijingâ€2006. Journal of Geophysical Research, 2009, 114, .	3.3	88
15	Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility. Atmospheric Research, 2013, 132-133, 91-101.	4.1	88
16	Role of secondary aerosols in haze formation in summer in the Megacity Beijing. Journal of Environmental Sciences, 2015, 31, 51-60.	6.1	74
17	Sources and abatement mechanisms of VOCs in southern China. Atmospheric Environment, 2019, 201, 28-40.	4.1	73
18	Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China. Atmospheric Pollution Research, 2021, 12, 33-46.	3.8	69

XINGANG LIU

#	Article	IF	CITATIONS
19	Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign. Atmospheric Environment, 2012, 60, 59-67.	4.1	68
20	Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. Journal of Environmental Sciences, 2019, 79, 297-310.	6.1	68
21	Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 2019, 647, 836-852.	8.0	66
22	Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere, 2020, 243, 125267.	8.2	65
23	Variation, sources and historical trend of black carbon in Beijing, China based on ground observation and MERRA-2 reanalysis data. Environmental Pollution, 2019, 245, 853-863.	7.5	59
24	Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration, China. Science of the Total Environment, 2019, 657, 657-670.	8.0	58
25	VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmospheric Environment, 2020, 224, 117340.	4.1	57
26	Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China. Journal of Environmental Sciences, 2018, 63, 236-249.	6.1	49
27	Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China. Journal of Environmental Sciences, 2015, 32, 155-167.	6.1	40
28	Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 2019, 681, 110-123.	8.0	40
29	Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China. Environmental Pollution, 2019, 251, 1-12.	7.5	40
30	Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmospheric Pollution Research, 2021, 12, 230-241.	3.8	40
31	Chemical and optical properties of aerosols and their interrelationship in winter in the megacity Shanghai of China. Journal of Environmental Sciences, 2015, 27, 59-69.	6.1	33
32	Chemical characteristics of PM10 during the summer in the mega-city Guangzhou, China. Atmospheric Research, 2014, 137, 25-34.	4.1	32
33	Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. Journal of Environmental Sciences, 2017, 54, 142-151.	6.1	32
34	Elucidating the pollution characteristics of nitrate, sulfate and ammonium in PM _{2.5} in Chengdu, southwest China, based on 3-year measurements. Atmospheric Chemistry and Physics, 2020, 20, 11181-11199.	4.9	32
35	Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region. Advances in Atmospheric Sciences, 2014, 31, 787-800.	4.3	30
36	Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2513-2526.	3.3	30

XINGANG LIU

#	Article	IF	CITATIONS
37	Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China. Journal of Environmental Sciences, 2020, 87, 49-59.	6.1	28
38	Chemical characteristics of size-resolved aerosols in winter in Beijing. Journal of Environmental Sciences, 2014, 26, 1641-1650.	6.1	27
39	Characteristics of Aerosol Optical Properties and Their Chemical Apportionments during CAREBeijing 2006. Aerosol and Air Quality Research, 2014, 14, 1431-1442.	2.1	27
40	In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell. Journal of Environmental Sciences, 2016, 43, 273-284.	6.1	26
41	Seasonal effects of additional HONO sources and the heterogeneous reactions of N2O5 on nitrate in the North China Plain. Science of the Total Environment, 2019, 690, 97-107.	8.0	24
42	Evolution and variations of atmospheric VOCs and O3 photochemistry during a summer O3 event in a county-level city, Southern China. Atmospheric Environment, 2022, 272, 118942.	4.1	21
43	Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006. Journal of Applied Meteorology and Climatology, 2009, 48, 1822-1830.	1.5	20
44	Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China. Journal of Environmental Sciences, 2015, 34, 44-56.	6.1	20
45	Evaluation of particulate matter deposition in the human respiratory tract during winter in Nanjing using size and chemically resolved ambient measurements. Air Quality, Atmosphere and Health, 2019, 12, 529-538.	3.3	19
46	Effect of potential HONO sources on peroxyacetyl nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences, 2020, 94, 81-87.	6.1	18
47	A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation. Science of the Total Environment, 2022, 806, 150247.	8.0	16
48	Insights into the phenomenon of an explosive growth and sharp decline in haze: A case study in Beijing. Journal of Environmental Sciences, 2019, 84, 122-132.	6.1	14
49	Chemical characteristics, source apportionment, and regional contribution of PM2.5 in Zhangjiakou, Northern China: A multiple sampling sites observation and modeling perspective. Environmental Advances, 2021, 3, 100034.	4.8	14
50	Key role of atmospheric water content in the formation of regional haze in southern China. Atmospheric Environment, 2019, 216, 116918.	4.1	12
51	A closure study of aerosol hygroscopic growth factor during the 2006 Pearl River Delta Campaign. Advances in Atmospheric Sciences, 2010, 27, 947-956.	4.3	11
52	Aircraft Emission Inventory and Characteristics of the Airport Cluster in the Guangdong–Hong Kong–Macao Greater Bay Area, China. Atmosphere, 2020, 11, 323.	2.3	10
53	Impacts of Meteorological Factors, VOCs Emissions and Inter-Regional Transport on Summer Ozone Pollution in Yuncheng. Atmosphere, 2021, 12, 1661.	2.3	8
54	Significant contribution of secondary particulate matter to recurrent air pollution: Evidence from in situ observation in the most polluted city of Fen-Wei Plain of China. Journal of Environmental Sciences, 2022, 114, 422-433.	6.1	5

XINGANG LIU

#	Article	IF	CITATIONS
55	A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 2022, 13, 101307.	3.8	4
56	Enhanced secondary organic aerosol formation during dust episodes by photochemical reactions in the winter in Wuhan. Journal of Environmental Sciences, 2023, 133, 70-82.	6.1	4
57	High crop yield losses induced by potential HONO sources — A modelling study in the North China Plain. Science of the Total Environment, 2022, 803, 149929.	8.0	2