Lingjie Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6343667/publications.pdf

Version: 2024-02-01

414414 567281 1,175 40 15 32 citations h-index g-index papers 42 42 42 1267 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nature Methods, 2015, 12, 759-762.	19.0	168
2	Stretchable and Temperatureâ€Sensitive Polymer Optical Fibers for Wearable Health Monitoring. Advanced Functional Materials, 2019, 29, 1902898.	14.9	139
3	Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics, 2019, 13, 809-816.	31.4	134
4	Large-field-of-view imaging by multi-pupil adaptive optics. Nature Methods, 2017, 14, 581-583.	19.0	103
5	Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33589-33598.	8.0	96
6	Wearable and Skinâ€Mountable Fiberâ€Optic Strain Sensors Interrogated by a Freeâ€Running, Dualâ€Comb Fiber Laser. Advanced Optical Materials, 2019, 7, 1900086.	7. 3	76
7	Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors, 2019, 19, 3771.	3.8	60
8	In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Optics Express, 2014, 22, 23786.	3.4	52
9	In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique. Optics Express, 2015, 23, 6145.	3.4	45
10	Quantum Dots-Doped Tapered Hydrogel Waveguide for Ratiometric Sensing of Metal Ions. Analytical Chemistry, 2018, 90, 12292-12298.	6.5	37
11	Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser. Optics Express, 2018, 26, 16147.	3.4	33
12	Multi-plane, wide-field fluorescent microscopy for biodynamic imaging in vivo. Biomedical Optics Express, 2019, 10, 6625.	2.9	30
13	Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Optics Letters, 2019, 44, 5747.	3.3	24
14	Soft and plasmonic hydrogel optical probe for glucose monitoring. Nanophotonics, 2021, 10, 3549-3558.	6.0	23
15	In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes. Optics Letters, 2018, 43, 5443.	3.3	20
16	High-speed, multi-modal, label-free imaging of pathological slices with a Bessel beam. Biomedical Optics Express, 2020, 11, 2694.	2.9	16
17	Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy. Optics Express, 2017, 25, 32010.	3.4	15
18	Adaptive optimization for axial multi-foci generation in multiphoton microscopy. Optics Express, 2019, 27, 35948.	3.4	14

#	Article	IF	CITATIONS
19	<italic>In Vivo</italic> Deep Tissue Imaging via Iterative Multiphoton Adaptive Compensation Technique. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 40-49.	2.9	11
20	Enhancing axial resolution and background rejection in line-scanning temporal focusing microscopy by focal modulation. Optics Express, 2018, 26, 21518.	3.4	10
21	Motion quantification during multi-photon functional imaging in behaving animals. Biomedical Optics Express, 2016, 7, 3686.	2.9	9
22	Advances in point spread function engineering for functional imaging of neural circuits in vivo. Journal Physics D: Applied Physics, 2020, 53, 383001.	2.8	9
23	Upconversion-luminescent hydrogel optical probe for in situ dopamine monitoring. Photonics Research, 2020, 8, 1800.	7.0	9
24	Precise 3D computer-generated holography based on non-convex optimization with spherical aberration compensation (SAC-NOVO) for two-photon optogenetics. Optics Express, 2021, 29, 20795.	3.4	8
25	Hybrid spatio-spectral coherent adaptive compensation for line-scanning temporal focusing microscopy. Journal Physics D: Applied Physics, 2019, 52, 024001.	2.8	6
26	Conformal convolutional neural network (CCNN) for single-shot sensorless wavefront sensing. Optics Express, 2020, 28, 19218.	3.4	6
27	Evaluating structured-illumination patterns in optimizing optical-sectioning of HiLo microscopy. Journal Physics D: Applied Physics, 2021, 54, 414001.	2.8	5
28	Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction. Optics Express, 2019, 27, 20117.	3.4	5
29	<scp>High</scp> â€speed volumetric imaging in vivo based on structured illumination microscopy with interleaved reconstruction. Journal of Biophotonics, 2021, 14, e202000513.	2.3	4
30	Improving signal-to-background ratio by orders of magnitude in high-speed volumetric imaging in vivo by robust Fourier light field microscopy. Photonics Research, 0, , .	7.0	3
31	HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging. Membranes, 2021, 11, 634.	3.0	1
32	Enhanced collection of scattered photons in nonlinear fluorescence microscopy by extended epi-detection with a silicon photomultiplier array. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1289-1298.	2.6	1
33	Enhance imaging depth in wide-field two-photon microscopy by extended detection and computational reconstruction. , 2019, , .		1
34	Photobleaching Imprinting Enhanced Background Rejection in Line-Scanning Temporal Focusing Microscopy. Frontiers in Chemistry, 2020, 8, 618131.	3.6	1
35	High-axial-resolution optical stimulation of neurons in vivo via two-photon optogenetics with speckle-free beaded-ring patterns. Photonics Research, 2022, 10, 1367.	7.0	1
36	High-speed wide-field optical-sectioning fluorescence microscopy based on one-shot structured illumination. , 2020, , .		0

#	Article	IF	CITATIONS
37	Special issue on translational biophotonics. Journal Physics D: Applied Physics, 2022, 55, 160401.	2.8	O
38	Contrast and axial confinement enhancement in deep imaging via HiLo-based line-scanning temporal focusing microscopy. , $2021, \ldots$		0
39	High-contrast, high-speed 3D imaging in vivo with HiLo based Fourier light field microscopy. , 2022, , .		O
40	Improving Axial Resolution of Optical Stimulation in Two-Photon Optogenetics by Beaded-Ring Pattern., 2022,,.		0