
Chun-Gon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6343534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circuit-analog radar absorbing structures using a periodic pattern etched on Ni-coated glass fabric. Composite Structures, 2022, 281, 115099.	3.1	2
2	Characterization and statistical approach of hypervelocity impact response of aluminum plates using PVDF sensors. International Journal of Impact Engineering, 2022, 165, 104212.	2.4	3
3	Flexural Properties of Multi-Tow Structures Constructed from Glass/Polypropylene Tape under Various Manufacturing Conditions. Fibers and Polymers, 2022, 23, 1965-1974.	1.1	1
4	Acoustic emission source localization in composite stiffened plate using triangulation method with signal magnitudes and arrival times. Advanced Composite Materials, 2021, 30, 149-163.	1.0	14
5	Design and verification of simultaneously self-sensing and microwave-absorbing composite structures based on embedded SiC fiber network. Composite Structures, 2021, 261, 113286.	3.1	9
6	Effects of dot-type electroless nickel plating on the mechanical properties of glass/epoxy used for radar-absorbing structures. Composite Structures, 2021, 257, 113165.	3.1	11
7	In-Flight Strain Monitoring of Aircraft Tail Boom Structure Using a Fiber Bragg Grating Sensor Based Health and Usage Monitoring System. International Journal of Aeronautical and Space Sciences, 2021, 22, 567-577.	1.0	10
8	A Comparative Study of Hypervelocity Impact Characteristics in Aluminum Whipple Shielding Through 3D Measurement and Numerical Analysis. International Journal of Aeronautical and Space Sciences, 2021, 22, 1356-1364.	1.0	0
9	Control of dielectric properties of micropattern printed fabric for radar absorbing structures. Composite Structures, 2021, 274, 114361.	3.1	2
10	Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity. Composite Structures, 2021, 273, 114279.	3.1	19
11	Stacking Order Effect of Hybrid Bumper Against High-Velocity Impact. International Journal of Aeronautical and Space Sciences, 2020, 21, 95-104.	1.0	1
12	High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation. Composites Part B: Engineering, 2020, 185, 107742.	5.9	49
13	Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures. Acta Astronautica, 2020, 168, 182-190.	1.7	41
14	CNT-Coated Quartz Woven Fabric Electrodes for Robust Lithium-ion Structural Batteries. Applied Sciences (Switzerland), 2020, 10, 8622.	1.3	2
15	Influence of lightning strikes on the structural performance of Ni-glass/epoxy radar-absorbing structures. Composite Structures, 2020, 245, 112301.	3.1	6
16	Investigation on microwave absorption characteristics of conductive-coated honeycomb absorber. Composite Structures, 2020, 242, 112129.	3.1	18
17	Embedded silicon carbide fiber sensor network based low-velocity impact localization of composite structures. Smart Materials and Structures, 2020, 29, 055030.	1.8	10
18	Flexible Design of Dual-Band Radar-Absorbing Composites by Controllable Permittivity. International Journal of Aeronautical and Space Sciences, 2019, 20, 368-371.	1.0	10

#	Article	IF	CITATIONS
19	Embedded fiber Bragg grating sensor–based wing load monitoring system for composite aircraft. Structural Health Monitoring, 2019, 18, 1337-1351.	4.3	19
20	Impact localization of composite stiffened panel with triangulation method using normalized magnitudes of fiber optic sensor signals. Composite Structures, 2019, 211, 522-529.	3.1	50
21	Strain sensing characteristics using piezoresistivity of semi-conductive silicon carbide fibers. Smart Materials and Structures, 2019, 28, 105035.	1.8	3
22	Behavior of dragon skin flexible metal bumper under hypervelocity impact. International Journal of Impact Engineering, 2019, 125, 13-26.	2.4	16
23	Application of silicon carbide fibers as a sensor for low-velocity impact detection and localization. Structural Health Monitoring, 2019, 18, 1372-1382.	4.3	3
24	Flexible Hypervelocity Impact Shield by Dragon skin Bumper and Hybrid Fabric Rear Wall. , 2019, , .		1
25	Real-time estimation of delamination occurrence induced by low-velocity impact in composite plates using optical fiber sensing system. Composite Structures, 2018, 189, 455-462.	3.1	17
26	Characteristics of silicon carbide fiber-reinforced composite for microwave absorbing structures. Composite Structures, 2018, 202, 290-295.	3.1	33
27	Polybenzimidazole (PBI) film coating for improved hypervelocity impact energy absorption for space applications. Composite Structures, 2018, 188, 72-77.	3.1	14
28	Enhanced resistance to atomic oxygen of OG POSS/epoxy nanocomposites. Composite Structures, 2018, 202, 959-966.	3.1	24
29	Multi-functional aramid/epoxy composite for stealth space hypervelocity impact shielding system. Composite Structures, 2018, 193, 113-120.	3.1	22
30	Thin broadband microwave absorber with conductive and magnetic materials coated on a glass fabric. Journal of Composite Materials, 2018, 52, 1413-1420.	1.2	14
31	Micro-mechanical failure prediction of radar-absorbing structure dispersed with multi-walled carbon nanotubes considering multi-scale modeling. Journal of Composite Materials, 2018, 52, 1649-1660.	1.2	2
32	Low-Velocity Impact Localization on Aircraft Wing Structure Using Fiber Bragg Grating Sensor. , 2018, , .		2
33	Numerical Study on Density Gradient Carbon–Carbon Composite for Vertical Launching System. International Journal of Aeronautical and Space Sciences, 2018, 19, 72-79.	1.0	4
34	Behavior of Shear Thickening Fluid (STF) impregnated fabric composite rear wall under hypervelocity impact. Composite Structures, 2018, 204, 52-62.	3.1	43
35	Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health. Composites Part B: Engineering, 2017, 123, 124-135.	5.9	59
36	Fabrication of a thin and lightweight microwave absorber containing Ni-coated glass fibers by electroless plating. Composites Science and Technology, 2017, 145, 165-172.	3.8	56

#	Article	IF	CITATIONS
37	Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures. Composite Structures, 2017, 176, 1061-1072.	3.1	23
38	High velocity impact characteristics of MWNT added CFRP at LEO space environment. Advanced Composite Materials, 2017, 26, 391-406.	1.0	4
39	Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors. Composites Part B: Engineering, 2017, 116, 298-312.	5.9	42
40	Low velocity impact monitoring of composite wing structure under simulated wing loading condition using fiber Bragg grating sensors. Proceedings of SPIE, 2017, , .	0.8	0
41	Investigation of LEO environment exposure monitoring potential using embedded FBG sensors. , 2017, , .		Ο
42	Impact source identification for pipe structure based on a one-dimensional fiber Bragg grating sensor array. Journal of Intelligent Material Systems and Structures, 2017, 28, 1662-1669.	1.4	2
43	Thermo-gravimetric analysis method to determine the fiber volume fraction for PAN-based CFRP considering oxidation of carbon fiber and matrix. Composites Part A: Applied Science and Manufacturing, 2017, 102, 40-47.	3.8	14
44	Error outlier with weighted Median Absolute Deviation threshold algorithm and FBG sensor based impact localization on composite wing structure. Composite Structures, 2017, 180, 412-419.	3.1	12
45	Radar-absorbing structure with nickel-coated glass fabric and its application to a wing airfoil model. Composite Structures, 2017, 180, 507-512.	3.1	22
46	Thin and lightweight radar-absorbing structure containing glass fabric coated with silver by sputtering. Composite Structures, 2017, 160, 1171-1177.	3.1	39
47	Computational analysis of a sandwich shield with free boundary inserted fabric at high velocity impact. Advanced Composite Materials, 2017, 26, 197-218.	1.0	7
48	High velocity impact test of a hybrid sandwich composite shield with unrestrained boundary fabric. Composite Structures, 2016, 153, 60-68.	3.1	7
49	Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon, 2016, 107, 564-572.	5.4	75
50	Impact localization on a composite stiffened panel using reference signals with efficient training process. Composites Part B: Engineering, 2016, 94, 271-285.	5.9	28
51	Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers. Composite Structures, 2016, 142, 263-271.	3.1	43
52	Effect of atmospheric pressure plasma treatment for repair of polymer matrix composite for aerospace applications. Journal of Composite Materials, 2016, 50, 1497-1507.	1.2	13
53	Low-speed Impact Localization on a Stiffened Composite Structure Using Reference Data Method. Composites Research, 2016, 29, 1-6.	0.1	2
54	Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure. Smart Materials and Structures, 2015, 24, 105003.	1.8	28

#	Article	IF	CITATIONS
55	An experimental study on a new air-eddy current damper for application in low-frequency accelerometers. Journal of Mechanical Science and Technology, 2015, 29, 3617-3625.	0.7	8
56	Protective effect of nanocomposite film from the low earth orbit environment. Journal of Composite Materials, 2015, 49, 2297-2306.	1.2	8
57	Impact source localization for composite structures under external dynamic loading condition. Advanced Composite Materials, 2015, 24, 359-374.	1.0	34
58	A thin hybrid circuit-analog (CA) microwave absorbing double-slab composite structure. Composite Structures, 2015, 124, 310-316.	3.1	29
59	Design and verification of a single slab RAS through mass production of glass/MWNT added epoxy composite prepreg. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
60	Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm. Composite Structures, 2015, 125, 159-169.	3.1	64
61	Low-velocity impact localization in a stiffened composite panel using a normalized cross-correlation method. Smart Materials and Structures, 2015, 24, 045036.	1.8	35
62	Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects. Composite Structures, 2015, 125, 520-529.	3.1	97
63	Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures. Composites Science and Technology, 2015, 116, 18-25.	3.8	54
64	Broadband microwave-absorbing honeycomb structure with novel design concept. Composites Part B: Engineering, 2015, 83, 14-20.	5.9	103
65	Electromagnetic Wave Absorbing Composites with a Square Patterned Conducting Polymer Layer for Wideband Characteristics. Shock and Vibration, 2014, 2014, 1-5.	0.3	1
66	High Temperature Endurable Fiber Optic Accelerometer. Shock and Vibration, 2014, 2014, 1-8.	0.3	2
67	Design of broadband microwave absorber using honeycomb structure. Electronics Letters, 2014, 50, 292-293.	0.5	27
68	Application of fiber Bragg grating sensors in light aircraft: ground and flight test. Proceedings of SPIE, 2014, , .	0.8	3
69	Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication. Composites Science and Technology, 2014, 105, 96-101.	3.8	41
70	Design of Circuit-Analog (CA) Absorber and Application to the Leading Edge of a Wing-Shaped Structure. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 599-607.	1.4	30
71	Manufacture and characterization of stealth wind turbine blade with periodic pattern surface for reducing radar interference. Composites Part B: Engineering, 2014, 56, 178-183.	5.9	26
72	Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. International Journal of Impact Engineering, 2014, 72, 67-74.	2.4	118

#	Article	IF	CITATIONS
73	Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size. Composites Research, 2014, 27, 190-195.	0.1	7
74	Design and Fabrication of Stratified Microwave Absorbing Structure Consisted of Glass/Epoxy - Resistive Sheet - Foam. Composites Research, 2014, 27, 225-230.	0.1	0
75	Enhanced durability of silanized multi-walled carbon nanotube/epoxy nanocomposites under simulated low earth orbit space environment. Composites Science and Technology, 2013, 87, 224-231.	3.8	21
76	Design of thin circuitâ€analogue multilayer absorber and application to leading edge of wing structure. Electronics Letters, 2013, 49, 216-217.	0.5	8
77	Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment. Composite Structures, 2013, 96, 554-560.	3.1	20
78	Wideband radar absorbing structure with low density material and loadâ€bearing MWCNT added composite material. Electronics Letters, 2013, 49, 620-622.	0.5	18
79	ELECTROMAGNETIC WAVE ABSORBING TECHNIQUE USING PERIODIC PATTERNS FOR LOW RCS PATCH ARRAY ANTENNA. International Journal of Modern Physics B, 2013, 27, 1350094.	1.0	0
80	High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric. International Journal of Aeronautical and Space Sciences, 2013, 14, 140-145.	1.0	8
81	Detection of Impact Damage in Composite Structures Using High Speed FBG Interrogator. Advanced Composite Materials, 2012, 21, 29-44.	1.0	23
82	Parametric Study of the Reflective Periodic Grating for In-Plane Displacement Measurement Using Optical Fibers. Sensors, 2012, 12, 4265-4280.	2.1	2
83	Fiber optic displacement sensor with a large extendable measurement range while maintaining equally high sensitivity, linearity, and accuracy. Review of Scientific Instruments, 2012, 83, 045002.	0.6	7
84	Wavelength division multiplexing technique for grating panel-based fiber optic sensor. , 2012, , .		0
85	Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in	0.5	9
86	Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors. Advanced Composite Materials, 2012, 21, 357-369.	1.0	22
87	Performance of a single reflective grating-based fiber optic accelerometer. Measurement Science and Technology, 2012, 23, 045101.	1.4	21
88	Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1620-1627.	3.8	50
89	Development of a mirror mounted fiber optic inclinometer. Sensors and Actuators A: Physical, 2012, 184, 46-52.	2.0	29
90	Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts. Advanced Composite Materials, 2012, 21, 177-192.	1.0	67

#	Article	IF	CITATIONS
91	Real-time impact identification algorithm for composite structures using fiber Bragg grating sensors. Structural Control and Health Monitoring, 2012, 19, 580-591.	1.9	69
92	Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system. Composites Science and Technology, 2012, 72, 498-505.	3.8	26
93	Design of patterned leaf spring for sensor-probe with stable reflectivity and high sensitivity. Sensors and Actuators A: Physical, 2012, 176, 19-26.	2.0	6
94	Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma. Surface Engineering and Applied Electrochemistry, 2012, 48, 117-126.	0.3	12
95	Use of Relative Baseline Features of Guided Waves for In situ Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 2011, 22, 175-189.	1.4	17
96	Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band. Smart Materials and Structures, 2011, 20, 015007.	1.8	35
97	Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply. Composites Part A: Applied Science and Manufacturing, 2011, 42, 694-701.	3.8	40
98	Surface molecular degradation of selected high performance polymer composites under low earth orbit environmental conditions. Polymer Degradation and Stability, 2011, 96, 1301-1309.	2.7	43
99	Processing and Characterization of Space-Durable High-Performance Polymeric Nanocomposite. Journal of Thermophysics and Heat Transfer, 2011, 25, 87-95.	0.9	8
100	Semi-cylindrical Radar Absorbing Structures using Fiber-reinforced Composites and Conducting Polymers in the X-band. Advanced Composite Materials, 2011, 20, 215-229.	1.0	15
101	Measurement Method and System of Optical Fiber-Based Beam Width Using a Reflective Grating Panel. International Journal of Aeronautical and Space Sciences, 2011, 12, 175-178.	1.0	5
102	Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors. Journal of the Korean Society for Composite Materials, 2011, 24, 24-30.	0.3	1
103	Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact. Journal of the Korean Society for Composite Materials, 2011, 24, 31-38.	0.3	0
104	Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment. Polymer Degradation and Stability, 2010, 95, 987-996.	2.7	32
105	Study on the semi-empirical model for the complex permittivity of carbon nanocomposite laminates in microwave frequency band. Composites Science and Technology, 2010, 70, 1748-1754.	3.8	12
106	A health management algorithm for composite train carbody based on FEM/FBG hybrid method. Composite Structures, 2010, 92, 1019-1026.	3.1	6
107	Tensile Properties of Carbon Fiber Composites with Different Resin Compositions at Cryogenic Temperatures. Advanced Composite Materials, 2010, 19, 63-77.	1.0	18
108	Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor. Measurement Science and Technology, 2010, 21, 035703.	1.4	17

#	Article	IF	CITATIONS
109	Study on the wavelet decomposed details of impact induced AE signals in composite laminates using fiber Bragg grating sensors. Proceedings of SPIE, 2010, , .	0.8	2
110	Low RCS patch array antenna with electromagnetic bandgap using a conducting polymer. , 2010, , .		20
111	Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites. Journal of the Korean Society for Composite Materials, 2010, 23, 17-23.	0.3	0
112	Real-time monitoring of transverse thermal strain of carbon fiber reinforced composites under long-term space environment using fiber optic sensors. NDT and E International, 2009, 42, 361-368.	1.7	17
113	Prediction of the thermal conductivities of four-axial non-woven composites. Composite Structures, 2009, 89, 262-269.	3.1	16
114	The use of carbon/dielectric fiber woven fabrics as filters for electromagnetic radiation. Carbon, 2009, 47, 1896-1904.	5.4	58
115	The Influence of the Particle Size of Silica on the Ballistic Performance of Fabrics Impregnated with Silica Colloidal Suspension. Journal of Composite Materials, 2009, 43, 2679-2698.	1.2	106
116	Mechanical Properties of MWNT-Loaded Plain-Weave Glass/Epoxy Composites. Advanced Composite Materials, 2009, 18, 209-219.	1.0	21
117	Characteristics of reflection-type optical fiber sensor system using one grating panel. , 2009, , .		2
118	Thermally induced stress analysis of composite/aluminum ring specimens at cryogenic temperature. Composites Science and Technology, 2008, 68, 1080-1087.	3.8	7
119	Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Composites Science and Technology, 2008, 68, 2909-2916.	3.8	189
120	Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band. Composites Science and Technology, 2008, 68, 2485-2489.	3.8	87
121	Failure prediction and strength improvement of uni-directional composite single lap bonded joints. Composite Structures, 2008, 82, 513-520.	3.1	76
122	Buckling behavior monitoring of a composite wing box using multiplexed and multi-channeled built-in fiber Bragg grating strain sensors. NDT and E International, 2008, 41, 534-543.	1.7	24
123	Thermo Elastic Analysis of a Type 3 Cryogenic Tank Considering Curing Temperature and Autofrettage Pressure. Journal of Reinforced Plastics and Composites, 2008, 27, 459-472.	1.6	12
124	Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature. Composites Part A: Applied Science and Manufacturing, 2008, 39, 647-654.	3.8	41
125	Optimal Design of Composite Stiffened Panel with Cohesive Elements using Micro-Genetic Algorithm. Journal of Composite Materials, 2008, 42, 2259-2273.	1.2	18
126	Damage Analysis of a Type 3 Cryogenic Propellant Tank After LN2 Storage Test. Journal of Composite Materials, 2008, 42, 975-992.	1.2	6

#	Article	IF	CITATIONS
127	Smart composite structure based on integrated passive wireless strain sensors. Proceedings of SPIE, 2008, , .	0.8	1
128	Usage of fiber Bragg grating sensors in low earth orbit environment. Proceedings of SPIE, 2008, , .	0.8	2
129	The mechanical strength of fiber Bragg gratings under controlled UV laser conditions. Smart Materials and Structures, 2007, 16, 1315-1319.	1.8	21
130	Mechanical Strength Characteristics of Fiber Bragg Gratings Considering Fabrication Process and Reflectivity. Journal of Intelligent Material Systems and Structures, 2007, 18, 303-309.	1.4	20
131	Damage assessment in layered composites using spectral analysis and Lamb wave. Composites Part B: Engineering, 2007, 38, 800-809.	5.9	50
132	Evaluation of cryogenic performance of adhesives using composite–aluminum double-lap joints. Composite Structures, 2007, 78, 440-446.	3.1	65
133	Tensile response of graphite/epoxy composites at low temperatures. Composite Structures, 2007, 79, 84-89.	3.1	67
134	Application of MWNT-added glass fabric/epoxy composites to electromagnetic wave shielding enclosures. Composite Structures, 2007, 81, 401-406.	3.1	103
135	OS17-3-7 Spectral response of a small diameter FBG sensor under uniform and nonuniform transverse loading. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS17-3-7OS17-3-7	0.0	0
136	Sensitivity of an extrinsic Fabry-Perot interferometric sensor with respect to the alignment direction of the sensor for detecting lamb waves. , 2006, , .		0
137	Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Composites Science and Technology, 2006, 66, 576-584.	3.8	277
138	Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Composite Structures, 2006, 72, 218-226.	3.1	116
139	Failure mode and strength of uni-directional composite single lap bonded joints with different bonding methods. Composite Structures, 2006, 72, 477-485.	3.1	160
140	The propagation of Lamb waves in a laminated composite plate with a variable stepped thickness. Composite Structures, 2006, 76, 388-396.	3.1	17
141	An efficient postbuckling analysis technique for composite stiffened curved panels. Composite Structures, 2006, 74, 361-369.	3.1	21
142	The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Composite Structures, 2006, 76, 406-410.	3.1	47
143	Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Composite Structures, 2006, 76, 397-405.	3.1	153
144	The embedment of fiber Bragg grating sensors into filament wound pressure tanks considering multiplexing. NDT and E International, 2006, 39, 109-116.	1.7	31

#	Article	IF	CITATIONS
145	Simulation method for complex permittivities of carbon black/epoxy composites at microwave frequency band. Journal of Applied Polymer Science, 2006, 100, 2189-2195.	1.3	22
146	Electromagnetic characteristics of frequency selective fabric composites. Electronics Letters, 2006, 42, 439.	0.5	25
147	In situ Strain and Temperature Monitoring of Adaptive Composite Materials. Journal of Intelligent Material Systems and Structures, 2006, 17, 1059-1067.	1.4	26
148	Feedback controlled nano-positioner using fiber optic EFPI sensor with novel demodulation technique. , 2005, 5763, 284.		0
149	The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths. NDT and E International, 2005, 38, 712-718.	1.7	47
150	Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Composite Structures, 2005, 67, 443-452.	3.1	66
151	Optimal design of filament wound type 3 tanks under internal pressure using a modified genetic algorithm. Composite Structures, 2005, 71, 16-25.	3.1	40
152	Minimum-weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by Genetic Algorithm. Composite Structures, 2005, 69, 239-246.	3.1	57
153	In situ simultaneous strain and temperature measurement of adaptive composite materials using a fiber Bragg grating based sensor. , 2005, , .		8
154	Directivity evaluation of fiber optic sensor for detecting Lamb waves. Smart Materials and Structures, 2005, 14, 1037-1046.	1.8	5
155	Optical fiber sensor systems for simultaneous monitoring of strain and fractures in composites. Smart Materials and Structures, 2005, 14, N52-N58.	1.8	9
156	Simultaneous measurement of strain and damage signal of composite structures using a fiber Bragg grating sensor. Smart Materials and Structures, 2005, 14, 658-663.	1.8	18
157	Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors. Measurement Science and Technology, 2005, 16, 813-820.	1.4	31
158	Impact monitoring in smart composites using stabilization-controlled FBG sensor system. , 2004, 5384, 279.		3
159	Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering, 2004, 35, 49-56.	5.9	333
160	Damage detection of composite structures using a stabilized extrinsic Fabry–Perot interferometric sensor system. Smart Materials and Structures, 2004, 13, 593-598.	1.8	52
161	In-situ Health Monitoring of Filament Wound Pressure Tanks using Embedded FBG Sensors. , 2004, , 963-968.		0
162	Lamb Wave Detection Using PZT and Fiber Optic Sensor. The Proceedings of Conference of Kanto Branch, 2004, 2004.10, 55-58.	0.0	0

#	Article	IF	CITATIONS
163	Optimal Design of Filament Wound Structures Based on the Semi-geodesic Path Algorithm. , 2004, , 264-269.		0
164	Size effect on the fiber strength of composite pressure vessels. Composite Structures, 2003, 59, 489-498.	3.1	37
165	Probabilistic deformation and strength prediction for a filament wound pressure vessel. Composites Part B: Engineering, 2003, 34, 481-497.	5.9	50
166	Optimal vibration control of a plate using optical fiber sensor and PZT actuator. Smart Materials and Structures, 2003, 12, 507-513.	1.8	9
167	Simultaneous monitoring of strain and temperature during and after cure of unsymmetric composite laminate using fibre-optic sensors. Smart Materials and Structures, 2003, 12, 29-35.	1.8	46
168	Thermoelastic Analysis of a Kick Motor Nozzle Incorporating Spatially Reinforced Composites. Journal of Spacecraft and Rockets, 2003, 40, 83-91.	1.3	10
169	In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system. Smart Materials and Structures, 2003, 12, 147-155.	1.8	73
170	Measuring dynamic strain of structures using a gold-deposited extrinsic FabryÂPerot interferometer. Smart Materials and Structures, 2003, 12, 1-5.	1.8	30
171	OS09W0207 Damage detection of composite structures using a stabilized extrinsic Fabry-Perot interferometric sensor system. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, OS09W0207- OS09W0207.	0.0	1
172	Static Characterization of Carbon–Carbon Brake Disk. Journal of Composite Materials, 2002, 36, 2135-2151.	1.2	1
173	Strain monitoring of a filament wound composite tank using fiber Bragg grating sensors. Smart Materials and Structures, 2002, 11, 848-853.	1.8	43
174	Cure monitoring of composite laminates using fiber optic sensors. Smart Materials and Structures, 2002, 11, 279-287.	1.8	76
175	Structural Analysis and Strain Monitoring of the Filament Wound Motor Case. Journal of Composite Materials, 2002, 36, 2373-2388.	1.2	16
176	Testing and Analysis of Downscaled Composite Wing Box. Journal of Aircraft, 2002, 39, 480-485.	1.7	2
177	Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor. Measurement Science and Technology, 2002, 13, 1191-1196.	1.4	47
178	Monitoring of impact damages in composite laminates using wavelet transform. Composites Part B: Engineering, 2002, 33, 35-43.	5.9	53
179	Analysis of filament wound composite structures considering the change of winding angles through the thickness direction. Composite Structures, 2002, 55, 63-71.	3.1	100
180	Free Edge Effect on the Post Failure Behavior of Composite Laminates Under Tensile Loading. Journal of Reinforced Plastics and Composites, 2001, 20, 191-221.	1.6	4

#	Article	IF	CITATIONS
181	Practical design of tapered composite structures using the manufacturing cost concept. Composite Structures, 2001, 51, 285-299.	3.1	29
182	Prediction of mechanical behavior of spatially reinforced composites for kick motor nozzle. Composite Structures, 2001, 54, 57-65.	3.1	8
183	Thermal distortion analysis of orbiting solar array including degradation effects of composite materials. Composites Part B: Engineering, 2001, 32, 271-285.	5.9	28
184	Simultaneous Measurement of Strain and Temperature of Structures Using Fiber Optic Sensor. Journal of Intelligent Material Systems and Structures, 2001, 12, 277-281.	1.4	16
185	Postbuckling Strength of Composite Plate with a Hole. Journal of Reinforced Plastics and Composites, 2001, 20, 466-481.	1.6	14
186	<title>Buckling behavior monitoring of composite wing box model using fiber Bragg grating sensor
system</title> . , 2001, , .		9
187	Monitoring of fabrication strain and temperature during composite cure using fiber optic sensor. , 2001, , .		3
188	Development of concurrent engineering system for design of composite structures. Composite Structures, 2000, 50, 297-309.	3.1	16
189	Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Composites Part B: Engineering, 2000, 31, 223-235.	5.9	104
190	Postbuckling Strength of Stiffened Composite Plates with Impact Damage. AIAA Journal, 2000, 38, 1956-1964.	1.5	8
191	<title>Strain monitoring of a smart bridge using a fiber Bragg grating sensor system with a wavelength-swept fiber laser</title> . , 2000, 3988, 371.		4
192	Impact Monitoring of Smart Composite Laminates Using Neural Network and Wavelet Analysis. Journal of Intelligent Material Systems and Structures, 2000, 11, 180-190.	1.4	80
193	Development of fibre optic ingress/egress methods for smart composite structures. Smart Materials and Structures, 2000, 9, 149-156.	1.8	28
194	Knowledge-Based Expert System for Optimal Stacking Sequence Design of Composite Structures. Journal of Composite Materials, 1999, 33, 1244-1274.	1.2	19
195	A digital signal processing algorithm for structural strain measurement by a 3 × 3 passive demodulated fiber optic interferometric sensor. Smart Materials and Structures, 1999, 8, 433-440.	1.8	18
196	Optimum design of composite structures with ply drop using genetic algorithm and expert system shell. Composite Structures, 1999, 46, 171-187.	3.1	77
197	Postbuckling and failure of stiffened composite panels under axial compression. Composite Structures, 1998, 42, 13-21.	3.1	66
198	Buckling and postbuckling behavior of composite cross-ply laminates with multiple delaminations. Composite Structures, 1998, 43, 257-274.	3.1	35

#	ARTICLE	IF	CITATIONS
199	Simultaneous sensing of the strain and points of failure in composite beams with an embedded fiber optic Michelson sensor. Composites Science and Technology, 1998, 57, 1639-1651.	3.8	35
200	Modeling of Composite Laminates with Multiple Delaminations under Compressive Loading. Journal of Composite Materials, 1998, 32, 951-968.	1.2	34
201	Measurement of Tensile Properties using Filament Wound Ring Specimens. Journal of Reinforced Plastics and Composites, 1997, 16, 810-824.	1.6	14
202	Buckling and Postbuckling Behavior of Stiffened Composite Panels Loaded in Compression. AIAA Journal, 1997, 35, 202-204.	1.5	5
203	MEASUREMENT OF MODULUS IN FILAMENT WOUND RING SPECIMEN USING SPLIT DISK TEST. Experimental Techniques, 1997, 21, 25-28.	0.9	11
204	Axisymmetric analysis of transient thermoelastic behaviors in composite brake disks. Journal of Thermophysics and Heat Transfer, 1996, 10, 69-75.	0.9	12
205	<title>Simultaneous strain and failure sensing of composite beam using an embedded fiber optic
extrinsic Fabry-Perot sensor</title> . , 1996, , .		3
206	Bimodal bound of system reliability for random composite structures. AIAA Journal, 1996, 34, 1494-1500.	1.5	1
207	Delamination Buckling and Growth of Composite Laminated Plates with Transverse Shear Deformation. Journal of Composite Materials, 1995, 29, 2047-2068.	1.2	37
208	Impact Resistance of Composite Laminated Sandwich Plates. Journal of Composite Materials, 1992, 26, 2247-2261.	1.2	62
209	Buckling of unbalanced anisotropic sandwich plates with finite bonding stiffness. AIAA Journal, 1988, 26, 982-988.	1.5	41
210	Viscoelastic Sandwich Plates with Crossply Faces. Journal of Structural Engineering, 1988, 114, 150-164.	1.7	20
211	Thin broadband microwave absorber with conductive and magnetic materials coated on a glass fabric. , 0, .		1