
Andrea Allmendinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6343343/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Study of Drying Phenomena of Highly Concentrated Protein Therapeutics—Drying Kinetics and Protein Aggregation. PDA Journal of Pharmaceutical Science and Technology, 2022, 76, 52-64.	0.5	1
2	Metal-Induced Fatty Acid Particle Formation Resulting from Hydrolytic Polysorbate Degradation. Journal of Pharmaceutical Sciences, 2022, 111, 743-751.	3.3	7
3	Glass Leachables as a Nucleation Factor for Free Fatty Acid Particle Formation in Biopharmaceutical Formulations. Journal of Pharmaceutical Sciences, 2021, 110, 785-795.	3.3	20
4	Opportunities in an Evolving Pharmaceutical Development Landscape: Product Differentiation of Biopharmaceutical Drug Products. Pharmaceutical Research, 2021, 38, 739-757.	3.5	6
5	Intraocular pressure and injection forces during intravitreal injection into enucleated porcine eyes. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 166, 87-93.	4.3	5
6	Near-Infrared Spectroscopy to Determine Residual Moisture in Freeze-Dried Products: Model Generation by Statistical Design of Experiments. Journal of Pharmaceutical Sciences, 2020, 109, 719-729.	3.3	12
7	Excipients for Room Temperature Stable Freeze-Dried Monoclonal Antibody Formulations. Journal of Pharmaceutical Sciences, 2020, 109, 807-817.	3.3	40
8	Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 147, 45-56.	4.3	22
9	Comparison of Techniques to Control Ice Nucleation during Lyophilization. Processes, 2020, 8, 1439.	2.8	9
10	Controlling Ice Nucleation during Lyophilization: Process Optimization of Vacuum-Induced Surface Freezing. Processes, 2020, 8, 1263.	2.8	4
11	Tissue Resistance during Large-Volume Injections in Subcutaneous Tissue of Minipigs. Pharmaceutical Research, 2020, 37, 184.	3.5	5
12	Optimizing the Formulation and Lyophilization Process for a Fragment Antigen Binding (Fab) Protein Using Solid-State Hydrogen–Deuterium Exchange Mass Spectrometry (ssHDX-MS). Molecular Pharmaceutics, 2019, 16, 4485-4495.	4.6	8
13	Be Aggressive! Amorphous Excipients Enabling Single-Step Freeze-Drying of Monoclonal Antibody Formulations. Pharmaceutics, 2019, 11, 616.	4.5	28
14	Characterization of surface properties of glass vials used as primary packaging material for parenterals. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 58-67.	4.3	24
15	Evaluation of Class Delamination Risk in Pharmaceutical 10 mL/10R Vials. Journal of Pharmaceutical Sciences, 2018, 107, 624-637.	3.3	22
16	Solid-State Hydrogen–Deuterium Exchange Mass Spectrometry: Correlation of Deuterium Uptake and Long-Term Stability of Lyophilized Monoclonal Antibody Formulations. Molecular Pharmaceutics, 2018, 15, 1-11.	4.6	39
17	Imaging Techniques to Characterize Cake Appearance of Freeze-Dried Products. Journal of Pharmaceutical Sciences, 2018, 107, 2810-2822.	3.3	26
18	Impact of Vial Washing and Depyrogenation on Surface Properties and Delamination Risk of Glass Vials. Pharmaceutical Research, 2018, 35, 146.	3.5	13

#	Article	IF	CITATIONS
19	Analytical Characterization and Predictive Tools for Highly Concentrated Protein Formulations. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 139-161.	0.6	1
20	Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material. Journal of Pharmaceutical Sciences, 2015, 104, 3319-3329.	3.3	32
21	Measuring Tissue Back-Pressure - In Vivo Injection Forces During Subcutaneous Injection. Pharmaceutical Research, 2015, 32, 2229-2240.	3.5	46
22	High-throughput viscosity measurement using capillary electrophoresis instrumentation and its application to protein formulation. Journal of Pharmaceutical and Biomedical Analysis, 2014, 99, 51-58.	2.8	30
23	Rheological characterization and injection forces of concentrated protein formulations: An alternative predictive model for non-Newtonian solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 318-328.	4.3	90