
Li Qiang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6342983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. Journal of Materials Chemistry C, 2022, 10, 7241-7250.	5.5	11
2	Flexible Nanocellulose Gated Pseudo-Diode for Neuromorphic Electronic Applications. IEEE Electron Device Letters, 2022, 43, 737-740.	3.9	5
3	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	5.9	4
4	Aqueous solution processed mesoporous silica-gated photo-perception neuromorphic transistor. Journal of Materials Science, 2021, 56, 4316-4327.	3.7	8
5	Mimicking Neurotransmitter Activity and Realizing Algebraic Arithmetic on Flexible Protein-Gated Oxide Neuromorphic Transistors. ACS Applied Materials & Interfaces, 2021, 13, 7784-7791.	8.0	12
6	Highly sensitive flexible tactile perceptual interactive platform with functions of Braille code recognition. Journal Physics D: Applied Physics, 2021, 54, 375102.	2.8	4
7	Poly (vinyl alcohol)/graphene oxide hybrid electrolyte gated oxide neuron transistors for multifunctional logic applications. Journal Physics D: Applied Physics, 2020, 53, 115106.	2.8	7
8	Albumen based protein gated bioinspired neuromorphic transistors with learning abilities. Organic Electronics, 2020, 87, 105961.	2.6	10
9	Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Applied Materials & Interfaces, 2020, 12, 26258-26266.	8.0	55
10	Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. Journal Physics D: Applied Physics, 2020, 53, 435105.	2.8	12
11	Flexible Poly(Vinyl Alcohol)–Graphene Oxide Hybrid Nanocomposite Based Cognitive Memristor with Pavlovian onditioned Reflex Activities. Advanced Electronic Materials, 2020, 6, 1901402.	5.1	31
12	lonic synergetically coupled electrolyte-gated transistors for neuromorphic engineering applications. , 2020, , 145-177.		1
13	Brain-inspired biodegradable pectin based proton conductor gated electronic synapse. Organic Electronics, 2020, 82, 105782.	2.6	11
14	Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. ACS Applied Materials & Interfaces, 2020, 12, 7833-7839.	8.0	41
15	Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. Journal of Materials Chemistry C, 2020, 8, 2780-2789.	5.5	30
16	Synaptic metaplasticity of protonic/electronic coupled oxide neuromorphic transistor. Organic Electronics, 2019, 74, 304-308.	2.6	19
17	Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption. ACS Applied Materials & Interfaces, 2019, 11, 28352-28358.	8.0	46
18	Flexible oxide neuromorphic transistors with synaptic learning functions. Journal Physics D: Applied Physics, 2019, 52, 405101.	2.8	7

LI QIANG ZHU

#	Article	IF	CITATIONS
19	Bilayered Oxideâ€Based Cognitive Memristor with Brainâ€Inspired Learning Activities. Advanced Electronic Materials, 2019, 5, 1900439.	5.1	43
20	Low-voltage protonic/photonic synergic coupled oxide phototransistor. Organic Electronics, 2019, 71, 31-35.	2.6	21
21	Role of Oxygen Vacancies at the TiO ₂ /HfO ₂ Interface in Flexible Oxideâ€Based Resistive Switching Memory. Advanced Electronic Materials, 2019, 5, 1800833.	5.1	105
22	lonotronic Neuromorphic Devices for Bionic Neural Network Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	2.4	16
23	Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities. ACS Applied Materials & Interfaces, 2018, 10, 16881-16886.	8.0	120
24	Organic/inorganic hybrid low-voltage flexible oxide transistor gated with biodegradable electrolyte. Organic Electronics, 2018, 56, 82-88.	2.6	9
25	Hodgkin–Huxley Artificial Synaptic Membrane Based on Protonic/Electronic Hybrid Neuromorphic Transistors. Advanced Biology, 2018, 2, 1700198.	3.0	41
26	Activity dependent post-tetanic potentiation of starch-based biopolymer electrolyte gated oxide synaptic transistors. Journal Physics D: Applied Physics, 2018, 51, 495401.	2.8	7
27	Restickable Oxide Neuromorphic Transistors with Spikeâ€Timingâ€Dependent Plasticity and Pavlovian Associative Learning Activities. Advanced Functional Materials, 2018, 28, 1804025.	14.9	139
28	Dendrite Integration Mimicked on Starch-Based Electrolyte-Gated Oxide Dendrite Transistors. ACS Applied Materials & Interfaces, 2018, 10, 40008-40013.	8.0	49
29	Pseudo-diode based on protonic/electronic hybrid oxide transistor. Journal of Applied Physics, 2018, 123, 025304.	2.5	1
30	Electrolyte Gated Oxide Pseudodiode for Inhibitory Synapse Applications. Advanced Electronic Materials, 2018, 4, 1800371.	5.1	14
31	Starch-based biopolymer electrolyte gated oxide synaptic transistors. Organic Electronics, 2018, 61, 312-317.	2.6	24
32	Activity Dependent Synaptic Plasticity Mimicked on Indium–Tin–Oxide Electric-Double-Layer Transistor. ACS Applied Materials & Interfaces, 2017, 9, 37064-37069.	8.0	46
33	Mixed protonic and electronic conductors hybrid oxide synaptic transistors. Journal of Applied Physics, 2017, 121, .	2.5	26
34	Humidity-Dependent Synaptic Plasticity for Proton Gated Oxide Synaptic Transistor. IEEE Electron Device Letters, 2017, 38, 1248-1251.	3.9	23
35	Chitosan-Based Electrolyte Gated Low Voltage Oxide Transistor With a Coplanar Modulatory Terminal. IEEE Electron Device Letters, 2017, 38, 322-325.	3.9	8
36	Protonâ€Conducting Graphene Oxideâ€Coupled Neuron Transistors for Brainâ€Inspired Cognitive Systems. Advanced Materials, 2016, 28, 3557-3563.	21.0	226

LI QIANG ZHU

#	Article	IF	CITATIONS
37	Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates. Advanced Materials, 2016, 28, 5878-5885.	21.0	144
38	Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane. ACS Applied Materials & Interfaces, 2016, 8, 21770-21775.	8.0	55
39	Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte. Journal of Materials Chemistry C, 2016, 4, 7744-7750.	5.5	27
40	Proton gated oxide electric-double-layer transistors for full-swing low voltage inverter applications. RSC Advances, 2016, 6, 1053-1057.	3.6	3
41	Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium–Gallium–Zinc-Oxide Electric-Double-Layer Transistors. ACS Applied Materials & Interfaces, 2016, 8, 9762-9768.	8.0	81
42	Oxide-based Synaptic Transistors Gated by Sol–Gel Silica Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 3050-3055.	8.0	52
43	Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors. Scientific Reports, 2015, 5, 18082.	3.3	70
44	Multi-gate synergic modulation in laterally coupled synaptic transistors. Applied Physics Letters, 2015, 107, .	3.3	32
45	Freestanding Artificial Synapses Based on Laterally Proton oupled Transistors on Chitosan Membranes. Advanced Materials, 2015, 27, 5599-5604.	21.0	352
46	Transient Characteristics for Proton Gating in Laterally Coupled Indium–Zinc-Oxide Transistors. ACS Applied Materials & Interfaces, 2015, 7, 6205-6210.	8.0	23
47	Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors. AIP Advances, 2015, 5, .	1.3	11
48	Indium-zinc-oxide electric-double-layer thin-film transistors for artificial synapse applications. , 2014, ,		1
49	Laterally Coupled Dual-Gate Oxide-Based Transistors on Sodium Alginate Electrolytes. IEEE Electron Device Letters, 2014, 35, 1257-1259.	3.9	42
50	Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nature Communications, 2014, 5, 3158.	12.8	655
51	Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors. Applied Physics Letters, 2014, 104, 133504.	3.3	46
52	Atomic layer deposited Al2O3 films for anti-reflectance and surface passivation applications. Applied Surface Science, 2014, 288, 430-434.	6.1	34
53	Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. Nanoscale, 2013, 5, 10194.	5.6	72
54	Proton induced multilevel storage capability in self-assembled indium-zinc-oxide thin-film transistors. Applied Physics Letters, 2013, 103, 113503.	3.3	9

LI QIANG ZHU

#	Article	IF	CITATIONS
55	Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale, 2013, 5, 1980.	5.6	73
56	Laser directly written junctionless in-plane-gate neuron thin film transistors with AND logic function. Applied Physics Letters, 2013, 102, .	3.3	10
57	Laser patterned junctionless neuron thin-films transistor arrays. , 2013, , .		0
58	Dual Function of Antireflectance and Surface Passivation of Atomic-Layer-Deposited \$hbox{Al}_{2}hbox{O}_{3}\$ Films. IEEE Electron Device Letters, 2012, 33, 1753-1755.	3.9	13