
Suat Sari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6342586/publications.pdf Version: 2024-02-01

<u> Siiat Sadi</u>

#	Article	IF	CITATIONS
1	Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorganic Chemistry, 2018, 81, 168-174.	2.0	73
2	Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chemistry, 2018, 79, 257-264.	2.0	72
3	α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. International Journal of Biological Macromolecules, 2017, 105, 1062-1070.	3.6	58
4	Flavonoids as alpha-glucosidase inhibitors: mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochemistry Reviews, 2020, 19, 1081-1092.	3.1	53
5	New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies. European Journal of Medicinal Chemistry, 2017, 130, 124-138.	2.6	50
6	Potential of Potentilla inclinata and its polyphenolic compounds in α-glucosidase inhibition: Kinetics and interaction mechanism merged with docking simulations. International Journal of Biological Macromolecules, 2018, 108, 81-87.	3.6	49
7	Flavones as tyrosinase inhibitors: kinetic studies <i>in vitro</i> and <i>in silico</i> . Phytochemical Analysis, 2020, 31, 314-321.	1.2	34
8	Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 760-772.	2.5	33
9	Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Bioorganic Chemistry, 2019, 86, 296-304.	2.0	32
10	Novel water soluble BODIPY compounds: Synthesis, photochemical, DNA interaction, topoisomerases inhibition and photodynamic activity properties. European Journal of Medicinal Chemistry, 2019, 183, 111685.	2.6	26
11	Flavonoids as tyrosinase inhibitors in <i>in silico</i> and <i>inÂvitro</i> models: basic framework of SAR using a statistical modelling approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 427-436.	2.5	25
12	α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Bioorganic Chemistry, 2018, 81, 545-552.	2.0	24
13	Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacological Reports, 2018, 70, 1116-1123.	1.5	22
14	Tyrosinase inhibition by a rare neolignan: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Computational Biology and Chemistry, 2018, 76, 61-66.	1.1	22
15	New (arylalkyl)azole derivatives showing anticonvulsant effects could have VGSC and/or GABA A R affinity according to molecular modeling studies. European Journal of Medicinal Chemistry, 2016, 124, 407-416.	2.6	20
16	Synthesis, in vivo anticonvulsant testing, and molecular modeling studies of new nafimidone derivatives. Drug Development Research, 2019, 80, 606-616.	1.4	20
17	A new series of pyridazinone derivatives as cholinesterases inhibitors: Synthesis, in vitro activity and molecular modeling studies. Pharmacological Reports, 2019, 71, 1253-1263.	1.5	19
18	Discovery and Characterisation of Dual Inhibitors of Tryptophan 2,3-Dioxygenase (TDO2) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Using Virtual Screening. Molecules, 2019, 24, 4346.	1.7	17

SUAT SARI

#	Article	IF	CITATIONS
19	Synthesis, anticonvulsant screening, and molecular modeling studies of new arylalkylimidazole oxime ether derivatives. Drug Development Research, 2019, 80, 269-280.	1.4	16
20	Design, synthesis, and molecular modeling of new 3(2H)-pyridazinone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Medicinal Chemistry Research, 2017, 26, 2293-2308.	1.1	15
21	Discovery of new azoles with potent activity against Candida spp. and Candida albicans biofilms through virtual screening. European Journal of Medicinal Chemistry, 2019, 179, 634-648.	2.6	15
22	New Anti‧eizure (Arylalkyl)azole Derivatives: Synthesis, <i>In Vivo</i> and <i>In Silico</i> Studies. Archiv Der Pharmazie, 2017, 350, e201700043.	2.1	14
23	Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes and Pigments, 2020, 174, 108072.	2.0	13
24	GPCR Modulation of Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules, 2017, 22, 2254.	1.7	12
25	Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorganic Chemistry, 2019, 92, 103259.	2.0	9
26	Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Development Research, 2020, 81, 1026-1036.	1.4	9
27	Discovery of potent αâ€glucosidase inhibitors through structureâ€based virtual screening of an inâ€house azole collection. Chemical Biology and Drug Design, 2021, 97, 701-710.	1.5	9
28	Azole derivatives with naphthalene showing potent antifungal effects against planktonic and biofilm forms of Candida spp.: an in vitro and in silico study. International Microbiology, 2021, 24, 93-102.	1.1	9
29	Alpha-glucosidase and tyrosinase inhibiton of polyphenols isolated from Potentilla speciosa var. speciosa: In vitro and in silico perspectives. Industrial Crops and Products, 2021, 170, 113806.	2.5	9
30	Synthesis, anticonvulsant activity, and molecular modeling studies of novel 1-phenyl/1-(4-chlorophenyl)-2-(1H-triazol-1-yl)ethanol ester derivatives. Medicinal Chemistry Research, 2018, 27, 2171-2186.	1.1	8
31	Potential of nafimidone derivatives against coâ€morbidities of epilepsy: In vitro, in vivo, and in silico investigations. Drug Development Research, 2022, 83, 184-193.	1.4	8
32	Antifungal screening and in silico mechanistic studies of an inâ€house azole library. Chemical Biology and Drug Design, 2019, 94, 1944-1955.	1.5	6
33	Azoles containing naphthalene with activity against Gram-positive bacteria: inÂvitro studies and in silico predictions for flavohemoglobin inhibition. Journal of Biomolecular Structure and Dynamics, 2021, , 1-10.	2.0	6
34	In vitro and in silico assessment of DNA interaction, topoisomerase I and II inhibition properties of chrysosplenetin. International Journal of Biological Macromolecules, 2020, 163, 1053-1059.	3.6	5
35	Azole antifungal compounds could have dual cholinesterase inhibitory potential according to virtual screening, enzyme kinetics, and toxicity studies of an inhouse library. Journal of Molecular Structure, 2021, 1235, 130268.	1.8	5
36	Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations. Archives of Biochemistry and Biophysics, 2021, 698, 108728.	1.4	4

Suat Sari

#	Article	IF	CITATIONS
37	Antifungal Azole Derivatives Featuring Naphthalene Prove Potent and Competitive Cholinesterase Inhibitors with Potential CNS Penetration According to the <i>in Vitro</i> and <i>in Silico</i> Studies. Chemistry and Biodiversity, 0, , .	1.0	4
38	Synthesis and cytotoxicity studies on new pyrazolecontaining oxime ester derivatives. Tropical Journal of Pharmaceutical Research, 2021, 18, 1315-1322.	0.2	3
39	p-Trifluoroacetophenone Oxime Ester Derivatives: Synthesis, Antimicrobial and Cytotoxic Evaluation and Molecular Modeling Studies. Letters in Drug Design and Discovery, 2020, 17, 169-183.	0.4	3
40	Design, synthesis, antifungal activity, and QM/MM docking study of two azole derivatives with indole ring. Journal of Research in Pharmacy, 2020, 24, 681-692.	0.1	3
41	Multiple biological effects of secondary metabolites of Ziziphus jujuba: isolation and mechanistic insights through in vitro and in silico studies. European Food Research and Technology, 2022, 248, 1059-1067.	1.6	3
42	In silico repurposing of drugs for pan-HDAC and pan-SIRT inhibitors: Consensus structure-based virtual screening and pharmacophore modeling investigations. Turkish Journal of Pharmaceutical Sciences, 2021, 18, 0-0.	0.6	2
43	Rutin increases alphaâ€ŧubulin acetylation via histone deacetylase 6 inhibition. Drug Development Research, 2022, , .	1.4	2
44	Anti-inflammatory and Antinociceptive Potential of Verbascum latisepalum. Revista Brasileira De Farmacognosia, 2022, 32, 537-543.	0.6	2
45	Flavonoids as Inducers of Apoptosis and Autophagy inÂBreast Cancer. , 2021, , 147-196.		1
46	Class I histone deacetylase inhibition by aryl butenoic acid derivatives: In silico and in vitro studies. Journal of Research in Pharmacy, 2019, 23, 952-959.	0.1	0