P J Hakonen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6342090/p-j-hakonen-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

208 6,867 38 78 g-index

229 8,420 5.6 avg, IF 5.32 L-index

#	Paper	IF	Citations
208	Critical current fluctuations in graphene Josephson junctions. <i>Scientific Reports</i> , 2021 , 11, 19900	4.9	O
207	Comment on Absence of a Dissipative Quantum Phase Transition in Josephson Junctions (Physical Review X, 2021 , 11,	9.1	4
206	Thermoelectric current in a graphene Cooper pair splitter. <i>Nature Communications</i> , 2021 , 12, 138	17.4	7
205	Electrical Low-Frequency 1/ Noise Due to Surface Diffusion of Scatterers on an Ultra-low-Noise Graphene Platform. <i>Nano Letters</i> , 2021 , 21, 7637-7643	11.5	4
204	Bolometer operating at the threshold for circuit quantum electrodynamics. <i>Nature</i> , 2020 , 586, 47-51	50.4	27
203	Suspended superconducting weak links from aerosol-synthesized single-walled carbon nanotubes. <i>Nano Research</i> , 2020 , 13, 3433-3438	10	
202	Generation of a mode in phononic crystal based on 1D/2D structures. <i>Ultrasonics</i> , 2020 , 106, 106146	3.5	4
201	Cryogenic Differential Amplifier for NMR Applications. <i>Journal of Low Temperature Physics</i> , 2019 , 195, 72-80	1.3	2
200	Broadband lumped-element Josephson parametric amplifier with single-step lithography. <i>Applied Physics Letters</i> , 2019 , 114, 152601	3.4	6
199	A graphene resonator as an ultrasound detector for generalized Love waves in a polymer film with two level states. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 24LT02	3	2
198	Heat switch and thermoelectric effects based on Cooper-pair splitting and elastic cotunneling. <i>Physical Review B</i> , 2019 , 99,	3.3	9
197	Dry transfer method for suspended graphene on lift-off-resist: simple ballistic devices with Fabry-PEot interference. <i>Nanotechnology</i> , 2019 , 30, 25LT01	3.4	2
196	Hanbury Brown and Twiss exchange correlations in a graphene box. <i>Physical Review B</i> , 2019 , 100,	3.3	1
195	Weak antilocalization of composite fermions in graphene. <i>Physical Review B</i> , 2018 , 97,	3.3	1
194	Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise. <i>Journal of Low Temperature Physics</i> , 2018 , 191, 272-287	1.3	2
193	Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field. <i>Scientific Reports</i> , 2018 , 8, 594	4.9	4
192	Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene. <i>Nature Communications</i> , 2018 , 9, 2776	17.4	22

(2014-2018)

191	Hanbury-Brown and Twiss exchange and non-equilibrium-induced correlations in disordered, four-terminal graphene-ribbon conductor. <i>Scientific Reports</i> , 2018 , 8, 14952	4.9	2
190	Defects in h-BN tunnel barrier for local electrostatic probing of two dimensional materials. <i>APL Materials</i> , 2018 , 6, 091102	5.7	8
189	Terahertz detection using mechanical resonators based on 2D materials. AIP Advances, 2017, 7, 065014	1.5	2
188	Quartz tuning fork as a probe of surface oscillations. <i>Applied Physics Letters</i> , 2017 , 110, 071601	3.4	2
187	Thermal Relaxation in Titanium Nanowires: Signatures of Inelastic Electron-Boundary Scattering in Heat Transfer. <i>Journal of Low Temperature Physics</i> , 2017 , 189, 204-216	1.3	6
186	Contact doping, Klein tunneling, and asymmetry of shot noise in suspended graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	20
185	Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity. <i>Nature Communications</i> , 2016 , 7, 12548	17.4	31
184	Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers. <i>Review of Scientific Instruments</i> , 2016 , 87, 114706	1.7	7
183	Cooper pair splitting by means of graphene quantum dots. <i>Physical Review Letters</i> , 2015 , 114, 096602	7.4	62
182	Cavity optomechanics mediated by a quantum two-level system. <i>Nature Communications</i> , 2015 , 6, 6981	17.4	125
181	Buckled diamond-like carbon nanomechanical resonators. <i>Nanoscale</i> , 2015 , 7, 14747-51	7.7	8
180	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
179	Coupling between electrons and optical phonons in suspended bilayer graphene. <i>Physical Review B</i> , 2015 , 91,	3.3	20
178	Ultra low 1/f noise in suspended bilayer graphene. <i>Applied Physics Letters</i> , 2015 , 106, 263505	3.4	17
177	Wideband superconducting nanotube electrometer. <i>Applied Physics Letters</i> , 2015 , 107, 012601	3.4	
176	Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. <i>Nano Letters</i> , 2015 , 15, 1667-72	11.5	18
175	Single-mode and multimode Fabry-PEot interference in suspended graphene. <i>Physical Review B</i> , 2014 , 89,	3.3	36
174	Electron-phonon coupling in suspended graphene: supercollisions by ripples. <i>Nano Letters</i> , 2014 , 14, 3009-13	11.5	47

173	Advanced Concepts in Josephson Junction Reflection Amplifiers. <i>Journal of Low Temperature Physics</i> , 2014 , 175, 868-876	1.3	12
172	Graphene optomechanics realized at microwave frequencies. <i>Physical Review Letters</i> , 2014 , 113, 02740	4 7.4	63
171	Optomechanics: Hardware for a quantum network. <i>Nature</i> , 2014 , 507, 45, 47	50.4	5
170	Dry demagnetization cryostat for sub-millikelvin helium experiments: refrigeration and thermometry. <i>Review of Scientific Instruments</i> , 2014 , 85, 085106	1.7	22
169	Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. <i>Nature</i> , 2013 , 494, 211-5	50.4	188
168	Dynamical Casimir effect in a Josephson metamaterial. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4234-4238	11.5	221
167	Motional averaging in a superconducting qubit. <i>Nature Communications</i> , 2013 , 4, 1420	17.4	94
166	Charge qubit driven via the Josephson nonlinearity. <i>Superconductor Science and Technology</i> , 2013 , 26, 124001	3.1	7
165	Differential Bloch oscillating transistor pair. Superconductor Science and Technology, 2013, 26, 065009	3.1	1
164	Dielectric losses in multi-layer Josephson junction qubits. <i>Superconductor Science and Technology</i> , 2013 , 26, 085010	3.1	14
163	Shot noise in lithographically patterned graphene nanoribbons. <i>Physical Review B</i> , 2013 , 88,	3.3	10
162	Micromanipulation transfer of membrane resonators for circuit optomechanics. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 125024	2	1
161	Multimode circuit optomechanics near the quantum limit. <i>Nature Communications</i> , 2012 , 3, 987	17.4	156
160	Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout. <i>Nano Letters</i> , 2012 , 12, 198-202	11.5	99
159	Basis dependence of approximative energy levels in a strongly driven two-level system. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 042054	0.3	3
158	Dynamical Autler-Townes control of a phase qubit. <i>Scientific Reports</i> , 2012 , 2, 645	4.9	39
157	Tuning of a hypersonic surface phononic band gap using a nanoscale two-dimensional lattice of pillars. <i>Physical Review B</i> , 2012 , 86,	3.3	22
156	Graphene for future electronics. <i>Physica Scripta</i> , 2012 , T146, 014025	2.6	28

(2009-2012)

155	Josephson junction microwave amplifier in self-organized noise compression mode. <i>Scientific Reports</i> , 2012 , 2, 276	4.9	9
154	Pure dephasing in a superconducting three-level system. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 042039	0.3	2
153	Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system. <i>Physical Review B</i> , 2011 , 84,	3.3	44
152	Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. <i>Physical Review B</i> , 2011 , 84,	3.3	15
151	Microwave amplification with nanomechanical resonators. <i>Nature</i> , 2011 , 480, 351-4	50.4	190
150	Macroscopic quantum tunneling in nanoelectromechanical systems. Physical Review B, 2011, 84,	3.3	11
149	Atomic layer deposition of HfO2 on graphene from HfCl4 and H2O. Open Physics, 2011, 9,	1.3	18
148	Microwave reflection measurement of critical currents in a nanotube Josephson transistor with a resistive environment. <i>Nanotechnology</i> , 2011 , 22, 125203	3.4	2
147	Energy relaxation in graphene and its measurement with supercurrent. Physical Review B, 2011, 84,	3.3	27
146	Self-heating and nonlinear current-voltage characteristics in bilayer graphene. <i>Physical Review B</i> , 2011 , 83,	3.3	17
145	Thermal shot noise in top-gated single carbon nanotube field effect transistors. <i>Applied Physics Letters</i> , 2010 , 96, 192103	3.4	9
144	rf-electrometer using a carbon nanotube resonant tunneling transistor. <i>Journal of Applied Physics</i> , 2010 , 107, 084316	2.5	2
143	Shot noise suppression and hopping conduction in graphene nanoribbons. <i>Physical Review B</i> , 2010 , 82,	3.3	20
142	Strong gate coupling of high-Q nanomechanical resonators. <i>Nano Letters</i> , 2010 , 10, 4884-9	11.5	37
141	Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. <i>Physical Review Letters</i> , 2010 , 105, 257003	7.4	68
140	Electron-phonon coupling in single-walled carbon nanotubes determined by shot noise. <i>Applied Physics Letters</i> , 2010 , 97, 262115	3.4	9
139	Current-phase relation and Josephson inductance in a superconducting Cooper-pair transistor. <i>Physical Review B</i> , 2009 , 80,	3.3	5
138	Autler-Townes effect in a superconducting three-level system. <i>Physical Review Letters</i> , 2009 , 103, 1936	0 1 .4	121

137	Single-walled carbon nanotube weak links in Kondo regime with zero-field splitting. <i>Physical Review B</i> , 2009 , 79,	3.3	13
136	Local and non-local shot noise in multiwalled carbon nanotubes. <i>Europhysics Letters</i> , 2009 , 85, 37004	1.6	1
135	Interband transitions and interference effects in superconducting qubits. <i>Quantum Information Processing</i> , 2009 , 8, 245-259	1.6	4
134	Modeling and Characterization of Bloch Oscillating Junction Transistors. <i>Journal of Low Temperature Physics</i> , 2009 , 157, 6-28	1.3	2
133	Accessing nanomechanical resonators via a fast microwave circuit. <i>Applied Physics Letters</i> , 2009 , 95, 011	1990.29	23
132	Controlling supercurrents using single-walled carbon nanotube weak links. <i>Journal of Physics:</i> Conference Series, 2009 , 150, 052282	0.3	O
131	Diffusive Josephson junctions made out of multiwalled carbon nanotubes. <i>Journal of Physics:</i> Conference Series, 2009 , 150, 022091	0.3	1
130	Shot noise in ballistic graphene. <i>Physical Review Letters</i> , 2008 , 100, 196802	7.4	188
129	Single carbon nanotube transistor at GHz frequency. <i>Nano Letters</i> , 2008 , 8, 525-8	11.5	65
128	To the little of the constitution of the const		
	Towards direct closure of the quantum metrological triangle 2008 ,		5
127	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806	7.4	12
127		7.4	
,	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806 Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor.	, .	12
126	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806 Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor. <i>Journal of Applied Physics</i> , 2008 , 104, 033715 Evanescent Wave Transport and Shot Noise in Graphene: Ballistic Regime and Effect of Disorder.	2.5	12
126	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806 Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor. <i>Journal of Applied Physics</i> , 2008 , 104, 033715 Evanescent Wave Transport and Shot Noise in Graphene: Ballistic Regime and Effect of Disorder. <i>Journal of Low Temperature Physics</i> , 2008 , 153, 374-392	2.5	12 13 43
126 125	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806 Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor. <i>Journal of Applied Physics</i> , 2008 , 104, 033715 Evanescent Wave Transport and Shot Noise in Graphene: Ballistic Regime and Effect of Disorder. <i>Journal of Low Temperature Physics</i> , 2008 , 153, 374-392 Landau\(Zener Interferometry in a Cooper-Pair Box. <i>Journal of Low Temperature Physics</i> , 2007 , 146, 253-36	2.5 1.3 262 ₃	12 13 43
126 125 124	Vibronic spectroscopy of an artificial molecule. <i>Physical Review Letters</i> , 2008 , 101, 256806 Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor. <i>Journal of Applied Physics</i> , 2008 , 104, 033715 Evanescent Wave Transport and Shot Noise in Graphene: Ballistic Regime and Effect of Disorder. <i>Journal of Low Temperature Physics</i> , 2008 , 153, 374-392 Landau\(Zener Interferometry in a Cooper-Pair Box. <i>Journal of Low Temperature Physics</i> , 2007 , 146, 253-35. Shot noise of a multiwalled carbon nanotube field effect transistor. <i>Physical Review B</i> , 2007 , 75, Publisher\(\textbf{Note: Gate-Controlled Superconductivity in a Diffusive Multiwalled Carbon Nanotube	2.5 1.3 262 ₃	12 13 43 10

(2004-2006)

119	Tunneling of Cooper pairs across voltage-biased asymmetric single-Cooper-pair transistors. <i>Physical Review B</i> , 2006 , 74,	3.3	11
118	Statistics of electron tunneling in normal tunnel junctions: An analytical and numerical study including circuit effects. <i>Physical Review B</i> , 2006 , 74,	3.3	2
117	Setup for shot noise measurements in carbon nanotubes. AIP Conference Proceedings, 2006,	0	11
116	Continuous-time monitoring of Landau-Zener interference in a cooper-pair box. <i>Physical Review Letters</i> , 2006 , 96, 187002	7.4	209
115	Direct Measurements of Tunable Josephson Plasma Resonance in the L-Set 2006 , 45-53		
114	Direct observation of Josephson capacitance. <i>Physical Review Letters</i> , 2005 , 95, 206806	7.4	81
113	CurrentNoltage characteristics of a mesoscopic Josephson junction in a low-impedance environment. <i>Physica B: Condensed Matter</i> , 2005 , 359-361, 1442-1444	2.8	1
112	Low-frequency current noise and resistance fluctuations in multiwalled carbon nanotubes. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 28, 57-65	3	16
111	Charge sensitivity of the inductive single-electron transistor. <i>Applied Physics Letters</i> , 2005 , 87, 092502	3.4	6
110	Tunneling spectroscopy of disordered multiwalled carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	6
109	Noise properties of the Bloch oscillating transistor. <i>Applied Physics Letters</i> , 2005 , 86, 173507	3.4	3
108	Quantum capacitive phase detector. <i>Physical Review B</i> , 2005 , 71,	3.3	10
107	Inductive single-electron transistor. <i>Physical Review Letters</i> , 2004 , 93, 066805	7.4	39
106	Observation of shot-noise-induced asymmetry in the Coulomb blockaded Josephson junction. <i>Physical Review Letters</i> , 2004 , 93, 197002	7.4	34
105	Control of Coulomb blockade in a mesoscopic Josephson junction using single electron tunneling. <i>Journal of Applied Physics</i> , 2004 , 95, 8059-8062	2.5	5
104	Noise performance of the radio-frequency single-electron transistor. <i>Journal of Applied Physics</i> , 2004 , 95, 1274-1286	2.5	43
103	Superconducting Electronics at mK Temperatures. <i>Journal of Low Temperature Physics</i> , 2004 , 135, 823-8	8 3 83	1
102	Carbon Nanotube Radio-Frequency Single-Electron Transistor. <i>Journal of Low Temperature Physics</i> , 2004 , 136, 465-480	1.3	12

101	Design of cryogenic 700 MHz amplifier. <i>Cryogenics</i> , 2004 , 44, 783-788	1.8	22
100	Transport in strongly disordered multiwalled carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	25
99	Bloch oscillating transistor as the readout element for hot electron bolometers 2004,		1
98	Formation of metallic NbSe2 nanotubes and nanofibers. Current Applied Physics, 2003, 3, 473-476	2.6	27
97	Spectroscopy of mesoscopic Josephson junction using inelastic Cooper-pair tunneling. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 18, 13-14	3	1
96	Bloch oscillating transistor new mesoscopic amplifier. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 18, 15-16	3	3
95	Transport in disordered carbon nanotubes. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 18, 206-207	3	3
94	Low-noise current amplifier based on mesoscopic Josephson junction. <i>Science</i> , 2003 , 299, 1045-8	33.3	52
93	Quantum states of a mesoscopic SQUID measured using a small Josephson junction. <i>Physical Review B</i> , 2003 , 68,	3.3	6
92	Electron Heating Effects in Disordered Carbon Nanotubes. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 100-101	1.5	5
91	Coulomb-Blockaded Josephson Junction as a Noise Detector. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 187-188	1.5	1
90	Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes. <i>Microelectronic Engineering</i> , 2002 , 61-62, 687-691	2.5	12
89	Titanium single-electron transistor fabricated by electron-beam lithography. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 15, 41-47	3	6
88	Multiwalled Carbon Nanotubes as Building Blocks in Nanoelectronics. <i>Journal of Low Temperature Physics</i> , 2001 , 124, 335-352	1.3	22
87	Experiments on Dissipative Dynamics of Single Josephson Junctions. <i>Journal of Low Temperature Physics</i> , 2001 , 125, 89-114	1.3	8
86	Inverse proximity effect in superconductors near ferromagnetic material. <i>Europhysics Letters</i> , 2001 , 56, 590-595	1.6	34
85	Multiwalled carbon nanotube: Luttinger versus Fermi liquid. <i>Physical Review B</i> , 2001 , 64,	3.3	91
84	Multiwalled carbon nanotubes as ultrasensitive electrometers. <i>Applied Physics Letters</i> , 2001 , 78, 3295-3	32 9 .7	34

83	The Experimental Evidence for Vortex Nucleation in 4He. Lecture Notes in Physics, 2001, 36-50	0.8	4
82	Noise measurements on single electron transistors using bias switching read-out. <i>EPJ Applied Physics</i> , 2000 , 11, 227-229	1.1	
81	Asymptotic behavior of a normal tunnel junction at large voltages. <i>Physica B: Condensed Matter</i> , 2000 , 280, 399-400	2.8	
80	Pinning of a nanometric size vortex in superfluid 4He. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 87-8	3 8 2.8	2
79	Nuclear spin relaxation at ultralow temperatures. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1706-17	′0Z .8	
78	Transport measurements in SISNSIS single-electron transistors. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1826-1827	2.8	
77	Dissipative phase transition in a mesoscopic Josephson junction in a weak magnetic field. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1832-1833	2.8	2
76	Pseudo-contact angle due to superfluid vortices in 4 He. <i>Europhysics Letters</i> , 2000 , 50, 222-228	1.6	2
75	Effect of quantum noise on Coulomb blockade in normal tunnel junctions at high voltages. <i>Physical Review B</i> , 2000 , 61, 10890-10897	3.3	4
74	Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties. <i>Applied Physics Letters</i> , 2000 , 77, 4037-4039	3.4	36
73	Noise of a single electron transistor on a Si3N4 membrane. <i>Journal of Applied Physics</i> , 1999 , 86, 2684-2	6 <u>8</u> 65	1
72	Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. <i>Applied Physics Letters</i> , 1999 , 75, 728-730	3.4	81
71	Elementary Steps on the H4e Crystal Interface Probed by H3e Atoms. <i>Physical Review Letters</i> , 1999 , 83, 4804-4807	7.4	5
70	Buperconductor-Insulator Transition[In a Single Josephson Junction. <i>Physical Review Letters</i> , 1999 , 82, 1004-1007	7.4	86
69	Nuclear spin relaxation at ultralow temperatures. <i>Physical Review B</i> , 1999 , 59, 9462-9466	3.3	2
68	Superfluid interferometry 1999 , 287-292		
67	Growth of 4He-Crystals at mK-Temperatures. <i>Journal of Low Temperature Physics</i> , 1998 , 112, 117-164	1.3	46
66	Superfluid Gyrometers: Present State and Future Prospects. <i>Journal of Low Temperature Physics</i> , 1998 , 110, 709-718	1.3	8

65	Superfluid Vorticity and 1/f Noise in Melting of Solid 4He. <i>Journal of Low Temperature Physics</i> , 1998 , 110, 503-508	1.3	3
64	Observation of single-vortex pinning in superfluid 4He. <i>Physica B: Condensed Matter</i> , 1998 , 255, 55-74	2.8	9
63	Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy. <i>Applied Physics Letters</i> , 1998 , 73, 1505-1507	3.4	48
62	Bipolar programmable current supply for superconducting nuclear magnetic resonance magnets. <i>Review of Scientific Instruments</i> , 1998 , 69, 3418-3425	1.7	3
61	Evidence for Single-Vortex Pinning and Unpinning Events in Superfluid H4e. <i>Physical Review Letters</i> , 1998 , 81, 3451-3454	7.4	15
60	Detection of the Rotation of the Earth with a Superfluid Gyrometer. <i>Physical Review Letters</i> , 1997 , 78, 3602-3605	7.4	39
59	Interferometric studies of interfaces at milliKelvin temperatures. <i>European Physical Journal D</i> , 1996 , 46, 2965-2972		1
58	Spreading of superfluid4He on MgF2. European Physical Journal D, 1996 , 46, 429-430		
57	Anomalous growth of c-facets in4He crystals at mK-temperatures. <i>European Physical Journal D</i> , 1996 , 46, 463-464		
56	Observation of a new surface state on4He crystal interfaces. <i>European Physical Journal D</i> , 1996 , 46, 46	5-466	
55	Nucleation of helium-4 crystals at Millikelvin temperatures. European Physical Journal D, 1996 , 46, 467-	468	
54	Spiral growth of c-facets in4He crystals at mK-temperatures. <i>European Physical Journal D</i> , 1996 , 46, 469	9-470	
53	Investigations on3He crystals using optical interferometry at mK temperatures. <i>European Physical Journal D</i> , 1996 , 46, 479-480		
52	Spreading of superfluid4He on MgF2. <i>Journal of Low Temperature Physics</i> , 1996 , 102, 21-29	1.3	8
51	Optical interferometry in superfluid3He-B. <i>Journal of Low Temperature Physics</i> , 1996 , 102, 411-443	1.3	5
50	Evidence of 4He Crystallization via Quantum Tunneling at mK Temperatures. <i>Physical Review Letters</i> , 1996 , 77, 2514-2517	7.4	30
49	Facet growth of 4He crystals at mK temperatures. <i>Physical Review Letters</i> , 1996 , 76, 4187-4190	7.4	29

47	Dimples due to dislocations at the superfluid/solid interface of 4He. <i>Journal of Low Temperature Physics</i> , 1995 , 101, 519-523	1.3	
46	Evidence of a new vicinal state on the4He crystal interface. <i>Journal of Low Temperature Physics</i> , 1995 , 101, 525-530	1.3	3
45	Optical interferometry at ultra low temperatures. Journal of Low Temperature Physics, 1995, 101, 41-47	1.3	4
44	Observations on Superfluid Meniscus in Rotating 3He-B. <i>Physical Review Letters</i> , 1995 , 74, 2744-2747	7.4	12
43	Observation of a new surface state on 4He crystal interfaces. <i>Physical Review Letters</i> , 1995 , 75, 3324-33	2 <i>7</i> 7.4	15
42	Anomalous Spin-Lattice Relaxation in Dilute RhFe at Positive and Negative Nanokelvin Spin Temperatures. <i>Europhysics Letters</i> , 1994 , 25, 551-556	1.6	9
41	Optical Investigations of Film Dynamics in Superfluid 3 He Using a Cooled Charged Coupled Device. <i>Europhysics Letters</i> , 1994 , 28, 163-168	1.6	8
40	Cooled video camera for optical investigations below 1 mK. <i>Review of Scientific Instruments</i> , 1994 , 65, 1784-1785	1.7	16
39	Wetting of superfluid 4He by liquid 3He. <i>Physical Review Letters</i> , 1994 , 73, 1388-1391	7.4	7
38	Calculation of nuclear-spin entropy in silver and rhodium at positive and negative temperatures using Monte Carlo simulations. <i>Physical Review B</i> , 1994 , 49, 15363-15365	3.3	4
37	Vortex dimples at charged helium interfaces. Journal of Low Temperature Physics, 1994, 96, 355-367	1.3	3
36	Negative nanokelvin temperatures in the nuclear spin systems of silver and rhodium metals. <i>Physica B: Condensed Matter</i> , 1994 , 194-196, 291-292	2.8	1
35	Negative absolute temperatures: "hot" spins in spontaneous magnetic order. <i>Science</i> , 1994 , 265, 1821-5	533.3	19
34	Nuclear antiferromagnetism in rhodium metal at positive and negative nanokelvin temperatures. <i>Physical Review Letters</i> , 1993 , 70, 2818-2821	7.4	28
33	Nuclear magnetic ordering in silver at positive and negative spin temperatures. <i>Physica Scripta</i> , 1993 , T49A, 327-332	2.6	2
32	Observation of nuclear ferromagnetic ordering in silver at negative nanokelvin temperatures. <i>Physical Review Letters</i> , 1992 , 68, 365-368	7.4	32
31	Spin dynamics in highly polarized silver at negative absolute temperatures. <i>Physical Review B</i> , 1992 , 45, 2196-2200	3.3	8
30	Nuclear ferromagnetic ordering in silver at negative nanokelvin temperatures. <i>Journal of Low Temperature Physics</i> , 1992 , 89, 177-186	1.3	10

29	Spontaneous nuclear magnetic ordering in copper and silver at nano- and picokelvin temperatures. Journal of Magnetism and Magnetic Materials, 1991 , 100, 394-412	2.8	41
28	Investigations of nuclear magnetism in silver down to picokelvin temperatures. II. <i>Journal of Low Temperature Physics</i> , 1991 , 85, 25-65	1.3	25
27	Simultaneous spin and space rotation experiments in 3He-B. <i>Journal of Low Temperature Physics</i> , 1991 , 83, 323-330	1.3	8
26	Phase Diagram and NMR Studies of Antiferromagnetically Ordered Polycrystalline Silver. <i>Europhysics Letters</i> , 1991 , 15, 677-682	1.6	31
25	Interfacial resistive anomaly at a normal-superconducting boundary. <i>Physical Review B</i> , 1991 , 44, 462-46	5 5 .3	46
24	Electron-beam welded Cu-to-Ag joints for thermal contact at low temperatures. <i>Review of Scientific Instruments</i> , 1991 , 62, 1370-1371	1.7	7
23	Electrical transport in bismuth whiskers at millikelvin temperatures. <i>Journal of Physics Condensed Matter</i> , 1991 , 3, 7153-7160	1.8	5
22	Studies of nuclear magnetism in silver at positive and negative nanokelvin temperatures. <i>Physica B: Condensed Matter</i> , 1990 , 165-166, 785-786	2.8	1
21	NQR studies of scandium metal at low temperatures. <i>Physica B: Condensed Matter</i> , 1990 , 165-166, 793-7	7 9 .8	7
20	Evidence for Soft Vortex Cores in 3 He-B at High Magnetic Fields. <i>Europhysics Letters</i> , 1990 , 11, 651-656	1.6	1
19	Nuclear magnetism in silver at positive and negative absolute temperatures in the low nanokelvin range. <i>Physical Review Letters</i> , 1990 , 64, 2707-2710	7.4	40
18	Measurements of the Dipolar Velocity in Superfluid 3 He-B. <i>Europhysics Letters</i> , 1989 , 9, 355-360	1.6	8
17	Vortices in rotating superfluid 3He. <i>Physica B: Condensed Matter</i> , 1989 , 160, 1-55	2.8	50
16	NMR and axial magnetic field textures in stationary and rotating superfluid3He-B. <i>Journal of Low Temperature Physics</i> , 1989 , 76, 225-283	1.3	56
15	Surface spin waves in 3He-A, a probe for vortex phenomena in narrow gaps. <i>Physical Review Letters</i> , 1987 , 58, 678-681	7.4	19
14	Vortex-free state of 3He-B in a rotating cylinder. <i>Physical Review Letters</i> , 1987 , 59, 1006-1009	7.4	28
13	Vortices in Rotating Superfluid He3. <i>Physics Today</i> , 1987 , 40, 70-78	0.9	7
12	Decay of vortex state and mutual friction in superfluid3He-A. <i>Journal of Low Temperature Physics</i> , 1987 , 67, 313-318	1.3	19

LIST OF PUBLICATIONS

11	Vortices in 3HeA in Restricted Geometries. <i>Japanese Journal of Applied Physics</i> , 1987 , 26, 181	1.4	5	
10	NMR studies on vortices in rotating3He-A. <i>Journal of Low Temperature Physics</i> , 1985 , 60, 187-221	1.3	28	
9	Comment on "Nucleation of 3He-B from the A phase: A cosmic-ray effect?". <i>Physical Review Letters</i> , 1985 , 54, 245	7.4	25	
8	Continuous Vortices with Broken Symmetry in Rotating Superfluid He3-A. <i>Physical Review Letters</i> , 1984 , 52, 1802-1805	7.4	43	
7	Phase Diagram of the First-Order Vortex-Core Transition in Superfluid He3-B. <i>Physical Review Letters</i> , 1984 , 53, 584-587	7.4	38	
6	NMR experiments on rotating superfluid3He-A and3He-B and their theoretical interpretation. <i>Journal of Low Temperature Physics</i> , 1983 , 53, 425-476	1.3	66	
5	Magnetic Vortices in Rotating Superfluid He3-B. <i>Physical Review Letters</i> , 1983 , 51, 1362-1365	7.4	64	
4	NMR Experiments on Rotating Superfluid He3-A: Evidence for Vorticity. <i>Physical Review Letters</i> , 1982 , 48, 1838-1841	7.4	19	
3	Experiments on Vortices in Rotating Superfluid He3-A. <i>Physical Review Letters</i> , 1982 , 49, 1258-1261	7.4	32	
2	On textures and spin waves in rotating superfluid3He-B at high magnetic fields. <i>Journal of Physics C: Solid State Physics</i> , 1982 , 15, L1277-L1285		14	
1	Vortices in 3He-A in a weak magnetic field. <i>Journal of Low Temperature Physics</i> , 1981 , 42, 503-514	1.3	23	