
Katharine G Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6341754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic diversity in Sargasso Sea bacterioplankton. Nature, 1990, 345, 60-63.	27.8	1,600
2	A PCR Assay To Discriminate Human and Ruminant Feces on the Basis of Host Differences in <i>Bacteroides-Prevotella</i> Genes Encoding 16S rRNA. Applied and Environmental Microbiology, 2000, 66, 4571-4574.	3.1	593
3	Fecal source tracking, the indicator paradigm, and managing water quality. Water Research, 2007, 41, 3517-3538.	11.3	463
4	Identification of Nonpoint Sources of Fecal Pollution in Coastal Waters by Using Host-Specific 16S Ribosomal DNA Genetic Markers from Fecal Anaerobes. Applied and Environmental Microbiology, 2000, 66, 1587-1594.	3.1	431
5	Host Distributions of Uncultivated Fecal Bacteroidales Bacteria Reveal Genetic Markers for Fecal Source Identification. Applied and Environmental Microbiology, 2005, 71, 3184-3191.	3.1	260
6	Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples. Applied and Environmental Microbiology, 2014, 80, 3086-3094.	3.1	221
7	Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes. Applied and Environmental Microbiology, 2004, 70, 5695-5697.	3.1	157
8	Genetic Markers for Rapid PCR-Based Identification of Gull, Canada Goose, Duck, and Chicken Fecal Contamination in Water. Applied and Environmental Microbiology, 2012, 78, 503-510.	3.1	130
9	Differential decay of human faecal <i>Bacteroides</i> in marine and freshwater. Environmental Microbiology, 2011, 13, 3235-3249.	3.8	102
10	Detection ofBacteroidalesFecal Indicators and the Zoonotic PathogensE. coliO157:H7,Salmonella, andCampylobacterin River Water. Environmental Science & Technology, 2007, 41, 1856-1862.	10.0	95
11	Survival and persistence of human and ruminantâ€specific faecal <i>Bacteroidales</i> in freshwater microcosms. Environmental Microbiology, 2009, 11, 1410-1421.	3.8	95
12	Basin-Wide Analysis of the Dynamics of Fecal Contamination and Fecal Source Identification in Tillamook Bay, Oregon. Applied and Environmental Microbiology, 2006, 72, 5537-5546.	3.1	89
13	Application of a rapid method for identifying fecal pollution sources in a multi-use estuary. Water Research, 2003, 37, 909-913.	11.3	84
14	Source and Identification of Histamine-Producing Bacteria from Fresh and Temperature-Abused Albacore. Journal of Food Protection, 2001, 64, 1035-1044.	1.7	75
15	A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. Journal of Water and Health, 2003, 1, 181-194.	2.6	69
16	ldentification of Bacteria Crucial to Histamine Accumulation in Pacific Mackerel during Storage. Journal of Food Protection, 2001, 64, 1556-1564.	1.7	64
17	Molecular Approaches to Microbiological Monitoring: Fecal Source Detection. Environmental Monitoring and Assessment, 2003, 81, 313-326.	2.7	62
18	Microplate Subtractive Hybridization To Enrich for Bacteroidales Genetic Markers for Fecal Source Identification. Applied and Environmental Microbiology, 2005, 71, 3179-3183.	3.1	58

KATHARINE G FIELD

#	Article	IF	CITATIONS
19	Sensitive detection of sample interference in environmental qPCR. Water Research, 2012, 46, 3251-3260.	11.3	53
20	Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Applied and Environmental Microbiology, 2016, 82, 2773-2782.	3.1	51
21	Persistence and Growth of Fecal Bacteroidales Assessed by Bromodeoxyuridine Immunocapture. Applied and Environmental Microbiology, 2006, 72, 4532-4539.	3.1	42
22	Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers – Is it feasible?. Water Research, 2013, 47, 6849-6861.	11.3	39
23	Bayesian meta-analysis to synthesize decay rate constant estimates for common fecal indicator bacteria. Water Research, 2016, 104, 262-271.	11.3	23
24	Molecular approaches to microbiological monitoring: fecal source detection. Environmental Monitoring and Assessment, 2003, 81, 313-26.	2.7	22
25	A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. Journal of Water and Health, 2003, 1, 181-94.	2.6	15
26	Learning to Write Like a Scientist: A Writing-Intensive Course for Microbiology/Health Science Students. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	11
27	Global model fitting to compare survival curves for faecal indicator bacteria and ruminantâ€associated genetic markers. Journal of Applied Microbiology, 2017, 122, 1704-1713.	3.1	5
28	Comparing industry and academia priorities in bioenergy education: a Delphi study. International Journal of Sustainable Energy, 2018, 37, 956-969.	2.4	5
29	Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources. , 2015, , 3.4.3-1-3.4.3-8.		1