
Joseph G Culotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634168/publications.pdf Version: 2024-02-01

LOSEDH C. CULOTTL

#	Article	IF	CITATIONS
1	Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Molecular Neurodegeneration, 2021, 16, 77.	10.8	13
2	Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development (Cambridge), 2020, 147, .	2.5	0
3	The directed migration of gonadal distal tip cells in Caenorhabditis elegans requires NGAT-1, a ß1,4-N-acetylgalactosaminyltransferase enzyme. PLoS ONE, 2017, 12, e0183049.	2.5	7
4	Forty-five years of cell-cycle genetics. Molecular Biology of the Cell, 2015, 26, 4307-4312.	2.1	6
5	The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells. PLoS Genetics, 2015, 11, e1005446.	3.5	12
6	Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in C. elegans. PLoS Genetics, 2014, 10, e1004381.	3.5	26
7	<i>C. elegans</i> PVF-1 inhibits permissive UNC-40 signalling through CED-10 GTPase to position the male ray 1 sensillum. Development (Cambridge), 2013, 140, 4020-4030.	2.5	16
8	Semaphorin-1 and Netrin Signal in Parallel and Permissively to Position the Male Ray 1 Sensillum in Caenorhabditis elegans. Genetics, 2012, 192, 959-971.	2.9	6
9	Semaphorin and Eph Receptor Signaling Guide a Series of Cell Movements for Ventral Enclosure in C.Âelegans. Current Biology, 2012, 22, 1-11.	3.9	352
10	Genetic association of the GDNF alpha-receptor genes with schizophrenia and clozapine response. Journal of Psychiatric Research, 2010, 44, 700-706.	3.1	39
11	Genetics of Extracellular Matrix Remodeling During Organ Growth Using the <i>Caenorhabditis elegans</i> Pharynx Model. Genetics, 2010, 186, 969-982.	2.9	22
12	<i>C. elegans mig-6</i> encodes papilin isoforms that affect distinct aspects of DTC migration, and interacts genetically with <i>mig-17</i> and <i>collagen IV</i> . Development (Cambridge), 2009, 136, 1433-1442.	2.5	48
13	Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO Journal, 2009, 28, 2437-2448.	7.8	74
14	UNC-129 regulates the balance between UNC-40 dependent and independent UNC-5 signaling pathways. Nature Neuroscience, 2009, 12, 150-155.	14.8	52
15	Dopamine suppresses octopamine signaling in C. elegans: possible involvement of dopamine in the regulation of lifespan. Aging, 2009, 1, 870-874.	3.1	10
16	The Slit Receptor EVA-1 Coactivates a SAX-3/Robo–Mediated Guidance Signal in <i>C. elegans</i> . Science, 2007, 317, 1934-1938.	12.6	56
17	C. elegans seu-1 encodes novel nuclear proteins that regulate responses to UNC-6/netrin guidance cues. Developmental Biology, 2007, 310, 44-53.	2.0	0
18	EXAMINATION OF NEURONS IN WILD TYPE AND MUTANTS OF <i>CAENORHABDITIS ELEGANS</i> USING ANTIBODIES TO HORSERADISH PEROXIDASE. Journal of Neurogenetics, 2007, 21, 271-289.	1.4	14

Joseph G Culotti

#	Article	IF	CITATIONS
19	VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nature Neuroscience, 2007, 10, 161-168.	14.8	77
20	Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development (Cambridge), 2005, 132, 1387-1400.	2.5	29
21	The UNC-73/Trio RhoGEF-2 domain is required in separate isoforms for the regulation of pharynx pumping and normal neurotransmission in C. elegans. Genes and Development, 2005, 19, 2016-2029.	5.9	49
22	Conversion of cell movement responses to Semaphorin-1 and Plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development (Cambridge), 2004, 131, 2073-2088.	2.5	47
23	Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO Journal, 2004, 23, 473-482.	7.8	190
24	Integration of Semaphorin-2A/MAB-20, ephrin-4, and UNC-129 TGF-β Signaling Pathways Regulates Sorting of Distinct Sensory Rays in C. elegans. Developmental Cell, 2004, 6, 383-395.	7.0	45
25	UNC-52/Perlecan affects gonadal leader cell migrations in c. elegans hermaphrodites through alterations in growth factor signaling. Developmental Biology, 2003, 256, 174-187.	2.0	78
26	Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2158-2163.	7.1	68
27	The Caenorhabditis elegans Gene,gly-2, Can Rescue the N-Acetylglucosaminyltransferase V Mutation of Lec4 Cells. Journal of Biological Chemistry, 2002, 277, 22829-22838.	3.4	34
28	UNC-5 Function Requires Phosphorylation of Cytoplasmic Tyrosine 482, but Its UNC-40-Independent Functions also Require a Region between the ZU-5 and Death Domains. Developmental Biology, 2002, 251, 348-366.	2.0	64
29	UNC-5 Function Requires Phosphorylation of Cytoplasmic Tyrosine 482, but Its UNC-40-Independent Functions also Require a Region between the ZU-5 and Death Domains. Developmental Biology, 2002, 251, 348-348.	2.0	7
30	Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 2065-2078.	2.5	46
31	Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development (Cambridge), 2002, 129, 2065-78.	2.5	19
32	C. elegans Slit Acts in Midline, Dorsal-Ventral, and Anterior-Posterior Guidance via the SAX-3/Robo Receptor. Neuron, 2001, 32, 25-38.	8.1	209
33	Netrin Stimulates Tyrosine Phosphorylation of the UNC-5 Family of Netrin Receptors and Induces Shp2 Binding to the RCM Cytodomain. Journal of Biological Chemistry, 2001, 276, 40917-40925.	3.4	59
34	Multiple Signaling Mechanisms of the UNC-6/netrin Receptors UNC-5 and UNC-40/DCC in Vivo. Genetics, 2001, 158, 1071-1080.	2.9	72
35	Genetic analysis of growth cone migrations inCaenorhabditis elegans. Journal of Neurobiology, 2000, 44, 281-288.	3.6	34
36	Netrin-G1: a Novel Glycosyl Phosphatidylinositol-Linked Mammalian Netrin That Is Functionally Divergent from Classical Netrins. Journal of Neuroscience, 2000, 20, 6540-6550.	3.6	143

JOSEPH G CULOTTI

#	Article	IF	CITATIONS
37	Multiple Ephrins Control Cell Organization in C. elegans Using Kinase-Dependent and -Independent Functions of the VAB-1 Eph Receptor. Molecular Cell, 1999, 4, 903-913.	9.7	101
38	DCC and netrins. Current Opinion in Cell Biology, 1998, 10, 609-613.	5.4	124
39	Suppressors of Ectopic UNC-5 Growth Cone Steering Identify Eight Genes Involved in Axon Guidance inCaenorhabditis elegans. Developmental Biology, 1998, 194, 72-85.	2.0	165
40	Pioneer Axon Guidance by UNC-129, a C. elegans TGF , 1998, 281, 706-709.		194
41	Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor. Cell, 1996, 87, 175-185.	28.9	934
42	Functions of netrins and semaphorins in axon guidance. Current Opinion in Neurobiology, 1996, 6, 81-88.	4.2	92
43	Axon guidance mechanisms in Caenorhabditis elegans. Current Opinion in Genetics and Development, 1994, 4, 587-595.	3.3	41
44	Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature, 1993, 364, 327-330.	27.8	229
45	UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron, 1992, 9, 873-881.	8.1	471
46	UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell, 1992, 71, 289-299.	28.9	389
47	Examination of Neurons in Wild Type and Mutants of Caenorhabditis Elegans Using Antibodies to Horseradish Peroxidase. Journal of Neurogenetics, 1991, 7, 193-211.	1.4	59
48	The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron, 1990, 4, 61-85.	8.1	841
49	Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental Biology, 1986, 117, 456-487.	2.0	853
50	Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Developmental Biology, 1985, 111, 158-170.	2.0	427
51	A Neural Antigen Conserved in Different Invertebrates. Annals of the New York Academy of Sciences, 1984, 435, 341-343.	3.8	2