Michael E Stuckelberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6340687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The nanoscale distribution of copper and its influence on charge collection in CdTe solar cells. Nano Energy, 2022, 91, 106595.	8.2	16
2	Three-dimensional in situ imaging of single-grain growth in polycrystalline In2O3:Zr films. Communications Materials, 2022, 3, .	2.9	6
3	Development of an operando characterization stage for multi-modal synchrotron x-ray experiments. Review of Scientific Instruments, 2022, 93, .	0.6	1
4	Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell. Materials, 2021, 14, 228.	1.3	12
5	Modelling Cross-section Current Collection in Cu-Doped CdTe using PyCDTS. , 2021, , .		0
6	Comparison of XBIC and LBIC measurements of a fully encapsulated c-Si solar cell. , 2021, , .		3
7	Role of Cation Ordering on Device Performance in (Ag,Cu)InSe ₂ Solar Cells with KF Post-Deposition Treatment. ACS Applied Energy Materials, 2021, 4, 233-241.	2.5	2
8	Infrared Optical Properties: Hydrogen Bonding and Stability. , 2021, , 85-128.		0
9	Defect activation and annihilation in CICS solar cells: an operando x-ray microscopy study. JPhys Energy, 2020, 2, 025001.	2.3	18
10	Effects of X-rays on Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 17949-17956.	1.5	21
11	Towards Quantitative Interpretation of Fourier-Transform Photocurrent Spectroscopy on Thin-Film Solar Cells. Coatings, 2020, 10, 820.	1.2	4
12	Xâ€Ray Microscopy of Halide Perovskites: Techniques, Applications, and Prospects. Advanced Energy Materials, 2020, 10, 1903170.	10.2	49
13	PtyNAMi: ptychographic nano-analytical microscope. Journal of Applied Crystallography, 2020, 53, 957-971.	1.9	25
14	Quantifying the Elemental Distribution in Solar Cells from X-Ray Fluorescence Measurements with Multiple Detector Modules. , 2020, , .		3
15	Image Registration in Multi-Modal Scanning Microscopy: A Solar Cell Case Study. , 2020, , .		1
16	Mapping Current Collection in Cross Section: The case of Copper- doped CdTe Solar Cells. , 2020, , .		1
17	Cu-Local Structures and Their Relation with Nanoscale Electrical Performance in CdTe. , 2020, , .		2
18	Insight Into Metastable Defects in Flexible \$ext{Cu}(ext{In}_{1-x}ext{Ga}_{x})ext{Se}_{2}\$ Modules via X-ray Microscopy. , 2020, , .		0

MICHAEL E STUCKELBERGER

#	Article	IF	CITATIONS
19	Optical characterization of curved silicon PV modules with dichroic polymeric films. Solar Energy Materials and Solar Cells, 2019, 201, 110072.	3.0	Ο
20	Strain Mapping of CdTe Grains in Photovoltaic Devices. IEEE Journal of Photovoltaics, 2019, 9, 1790-1799.	1.5	20
21	Nano-scale Defect Analysis Through K-Means Clustering of CuInSe ₂ Solar Cells with Ag and K Incorporation. , 2019, , .		1
22	X-ray Beam Induced Current Measurements for Multi-Modal X-ray Microscopy of Solar Cells. Journal of Visualized Experiments, 2019, , .	0.2	17
23	Multimodal X-ray imaging of grain-level properties and performance in a polycrystalline solar cell. Journal of Synchrotron Radiation, 2019, 26, 1316-1321.	1.0	20
24	Quantifying X-Ray Fluorescence Data Using MAPS. Journal of Visualized Experiments, 2018, , .	0.2	16
25	How Does CIGS Performance Depend on Temperature at the Microscale?. IEEE Journal of Photovoltaics, 2018, 8, 278-287.	1.5	13
26	Quantitative Mapping of Deflection and Stress on Encapsulated Silicon Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 189-195.	1.5	12
27	The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites. Advanced Functional Materials, 2018, 28, 1706995.	7.8	28
28	What Limits Mobility in Hydrogenated Indium Oxide?. , 2018, , .		0
29	Design Concept for the In Situ Nanoprobe Beamline for the APS Upgrade. Microscopy and Microanalysis, 2018, 24, 194-195.	0.2	2
30	Nanoscale Growth Kinetics of Cu(In,Ga)Se ₂ Absorbers. Journal of Physical Chemistry C, 2018, 122, 22897-22902.	1.5	6
31	Carrier scattering mechanisms limiting mobility in hydrogen-doped indium oxide. Journal of Applied Physics, 2018, 123, .	1.1	15
32	Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution. IEEE Journal of Photovoltaics, 2017, 7, 590-597.	1.5	45
33	Review: Progress in solar cells from hydrogenated amorphous silicon. Renewable and Sustainable Energy Reviews, 2017, 76, 1497-1523.	8.2	134
34	Engineering solar cells based on correlative X-ray microscopy. Journal of Materials Research, 2017, 32, 1825-1854.	1.2	61
35	Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells. Nano Energy, 2017, 32, 488-493.	8.2	40
36	Nano-XRF Analysis of Metal Impurities Distribution at PL Active Grain Boundaries During mc-Silicon Solar Cell Processing. IEEE Journal of Photovoltaics, 2017, 7, 244-249.	1.5	8

#	Article	IF	CITATIONS
37	The Role of Water in the Reversible Optoelectronic Degradation of Hybrid Perovskites at Low Pressure. Journal of Physical Chemistry C, 2017, 121, 25659-25665.	1.5	19
38	Process Induced Deflection and Stress on Encapsulated Solar Cells. , 2017, , .		1
39	Machine Learning and Correlative Microscopy: How â€~Big Data' Techniques Can Benefit Thin Film Solar Cell Characterization. , 2017, , .		3
40	X-ray fluorescence at nanoscale resolution for multicomponent layered structures: a solar cell caseÂstudy. Journal of Synchrotron Radiation, 2017, 24, 288-295.	1.0	27
41	X-Ray Beam Induced Voltage: A Novel Technique for Electrical Nanocharacterization of Solar Cells. , 2017, , .		4
42	Low temperature spalling of silicon: A crack propagation study. , 2017, , .		2
43	Characterization of encapsulated solar cells by x-ray topography. , 2016, , .		4
44	Temperature dependence of hydrogenated amorphous silicon solar cell performances. Journal of Applied Physics, 2016, 119, .	1.1	27
45	Synchrotron x-ray characterization of alkali elements at grain boundaries in Cu(In, Ga)Se <inf>2</inf> solar cells. , 2016, , .		4
46	Growth of Cu(In, Ga)(S, Se) <inf>2</inf> films: Unravelling the mysteries by in-situ X-ray imaging. , 2016, , .		3
47	Elemental distribution and charge collection at the nanoscale on perovskite solar cells. , 2016, , .		8
48	Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 15169-15176.	4.0	15
49	Comparison of amorphous silicon absorber materials: Kinetics of lightâ€induced degradation. Progress in Photovoltaics: Research and Applications, 2016, 24, 446-457.	4.4	15
50	A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning. Journal of Lightwave Technology, 2016, 34, 1688-1693.	2.7	81
51	Comparison of LPCVD and sputter-etched ZnO layers applied as front electrodes in tandem thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 2016, 145, 185-192.	3.0	11
52	Highly transparent modulated surface textured front electrodes for highâ€efficiency multijunction thinâ€film silicon solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 949-963.	4.4	46
53	The boron-tailing myth in hydrogenated amorphous silicon solar cells. Applied Physics Letters, 2015, 107, 201112.	1.5	4
54	Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy. Review of Scientific Instruments, 2015, 86, 113705.	0.6	10

#	Article	IF	CITATIONS
55	Three-dimensional amorphous silicon solar cells on periodically ordered ZnO nanocolumns. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1823-1829.	0.8	11
56	Correlation between grain composition and charge carrier collection in Cu(In,Ga)Se2 solar cells. , 2015, , .		9
57	Latest developments in the x-ray based characterization of thin-film solar cells. , 2015, , .		15
58	Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Materials Today, 2015, 18, 378-384.	8.3	83
59	Complex Refractive Index Spectra of CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. Journal of Physical Chemistry Letters, 2015, 6, 66-71.	2.1	491
60	Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells. Solar Energy Materials and Solar Cells, 2015, 133, 163-169.	3.0	60
61	Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells. Journal of Applied Physics, 2014, 116, 094503.	1.1	25
62	Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 120, 143-150.	3.0	43
63	Self-Patterned Nanoparticle Layers for Vertical Interconnects: Application in Tandem Solar Cells. Nano Letters, 2014, 14, 5085-5091.	4.5	17
64	Class AAA LED-Based Solar Simulator for Steady-State Measurements and Light Soaking. IEEE Journal of Photovoltaics, 2014, 4, 1282-1287.	1.5	33
65	2-D Periodic and Random-on-Periodic Front Textures for Tandem Thin-Film Silicon Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1177-1184.	1.5	18
66	Thin-Film Silicon Triple-Junction Solar Cells on Highly Transparent Front Electrodes With Stabilized Efficiencies up to 12.8%. IEEE Journal of Photovoltaics, 2014, 4, 757-762.	1.5	30
67	The role of front and back electrodes in parasitic absorption in thin-film solar cells. EPJ Photovoltaics, 2014, 5, 50601.	0.8	4
68	Electrothermal Finite-Element Modeling for Defect Characterization in Thin-Film Silicon Solar Modules. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-8.	1.9	12
69	Electro-Optical Active Barium Titanate Thin Films in Silicon Photonics Devices. , 2013, , .		8
70	Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency. Journal of Applied Physics, 2013, 114, 154509.	1.1	50
71	Latest Developments of High-Efficiency Micromorph Tandem Silicon Solar Cells Implementing Innovative Substrate Materials and Improved Cell Design. IEEE Journal of Photovoltaics, 2012, 2, 236-240.	1.5	15

Light harvesting schemes for high efficiency thin film silicon solar cells. , 2012, , .

2

#	Article	IF	CITATIONS
73	Charge collection in amorphous silicon solar cells: Cell analysis and simulation of high-efficiency pin devices. Journal of Non-Crystalline Solids, 2012, 358, 2187-2189.	1.5	5
74	Time evolution of surface defect states in hydrogenated amorphous silicon studied by photothermal and photocurrent spectroscopy and optical simulation. Journal of Non-Crystalline Solids, 2012, 358, 2035-2038.	1.5	17
75	Advanced nanostructured materials for pushing light trapping towards the Yablonovitch limit. , 2011, , .		0
76	Internal electric field and fill factor of amorphous silicon solar cells. , 2010, , .		14
77	Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters, 2010, 96, .	1.5	116
78	Multi-modal characterization of kesterite thin-film solar cells: experimental results and numerical interpretation. Faraday Discussions, 0, 239, 160-179.	1.6	3