José R Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6340138/publications.pdf

Version: 2024-02-01

LOSÃO P CALLECO

#	Article	IF	CITATIONS
1	A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena, 2022, 208, 105730.	2.2	14
2	Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. Journal of Hazardous Materials, 2022, 424, 127413.	6.5	20
3	Compositional baseline assessments to address soil pollution: An application in Langreo, Spain. Science of the Total Environment, 2022, 812, 152383.	3.9	9
4	Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain). Environments - MDPI, 2022, 9, 24.	1.5	5
5	Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L Journal of Hazardous Materials, 2022, 433, 128748.	6.5	23
6	Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. Chemosphere, 2022, 301, 134645.	4.2	4
7	Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Environmental Pollution, 2022, 306, 119451.	3.7	11
8	Contrasting mobility of arsenic and copper in a mining soil: A comparative column leaching and pot testing approach. Journal of Environmental Management, 2022, 318, 115530.	3.8	2
9	Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere, 2022, 307, 135638.	4.2	34
10	Antagonistic Cd and Zn isotope behavior in the extracted soil fractions from industrial areas. Journal of Hazardous Materials, 2022, 439, 129519.	6.5	4
11	As sorption onto Fe-based nanoparticles and recovery from soils by means of wet high intensity magnetic separation. Chemical Engineering Journal, 2021, 408, 127325.	6.6	12
12	Effects of in situ Remediation With Nanoscale Zero Valence Iron on the Physicochemical Conditions and Bacterial Communities of Groundwater Contaminated With Arsenic. Frontiers in Microbiology, 2021, 12, 643589.	1.5	18
13	Comparison of the effectiveness of biochar vs. magnesite amendments to immobilize metals and restore a polluted soil. Environmental Geochemistry and Health, 2021, 43, 5053-5064.	1.8	5
14	Phytoremediation Potential of Native Herbaceous Plant Species Growing on a Paradigmatic Brownfield Site. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	13
15	Screening of Pioneer Metallophyte Plant Species with Phytoremediation Potential at a Severely Contaminated Hg and As Mining Site. Environments - MDPI, 2021, 8, 63.	1.5	8
16	Short-term experiment for the in situ stabilization of a polluted soil using mining and biomass waste. Journal of Environmental Management, 2021, 296, 113179.	3.8	11
17	Nanomaterials for soil remediation: Pollutant immobilization and opportunities for hybrid technologies. , 2021, , 701-723.		6
18	Local versus Regional Soil Screening Levels to Identify Potentially Polluted Areas. Mathematical Geosciences, 2020, 52, 381-396.	1.4	11

#	Article	IF	CITATIONS
19	Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 2020, 238, 124624.	4.2	79
20	A novel and synergistic geostatistical approach to identify sources and cores of Potentially Toxic Elements in soils: An application in the region of Cantabria (Northern Spain). Journal of Geochemical Exploration, 2020, 208, 106397.	1,5	11
21	Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environmental Pollution, 2020, 266, 115341.	3.7	20
22	Correlation between Geochemical and Multispectral Patterns in an Area Severely Contaminated by Former Hg-As Mining. ISPRS International Journal of Geo-Information, 2020, 9, 739.	1.4	8
23	Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy, 2020, 10, 759.	1.3	9
24	Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chemical Engineering Journal, 2020, 399, 125809.	6.6	48
25	Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environmental Science and Pollution Research, 2020, 27, 33681-33691.	2.7	33
26	Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Scientific Reports, 2020, 10, 1896.	1.6	90
27	Arsenic release from pyrite ash waste over an active hydrogeological system and its effects on water quality. Environmental Science and Pollution Research, 2020, 27, 10672-10684.	2.7	21
28	Environmental forensics of complexly contaminated sites: A complimentary fingerprinting approach. Environmental Pollution, 2020, 263, 114645.	3.7	12
29	Bioaugmentation Treatment of a PAH-Polluted Soil in a Slurry Bioreactor. Applied Sciences (Switzerland), 2020, 10, 2837.	1.3	22
30	A multi-faceted, environmental forensic characterization of a paradigmatic brownfield polluted by hazardous waste containing Hg, As, PAHs and dioxins. Science of the Total Environment, 2020, 726, 138546.	3.9	15
31	Reuse of Dunite Mining Waste and Subproducts for the Stabilization of Metal(oid)s in Polluted Soils. Minerals (Basel, Switzerland), 2019, 9, 481.	0.8	6
32	Environmental forensic characterization of former rail yard soils located adjacent to the Statue of Liberty in the New York/New Jersey harbor. Science of the Total Environment, 2019, 690, 1019-1034.	3.9	14
33	A multivariate examination of the timing and accumulation of potentially toxic elements at Las Conchas bog (NW Spain). Environmental Pollution, 2019, 254, 113048.	3.7	13
34	Contribution of fluorite mining waste to mercury contamination in coastal systems. Marine Pollution Bulletin, 2019, 149, 110576.	2.3	7
35	Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Science of the Total Environment, 2019, 675, 165-175.	3.9	60
36	Co-occurrence of Organic and Inorganic Contaminants in Former Hg-As Mining Sites. , 2019, , .		0

Co-occurrence of Organic and Inorganic Contaminants in Former Hg-As Mining Sites. , 2019, , . 36

#	Article	IF	CITATIONS
37	A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. Chemosphere, 2019, 218, 767-777.	4.2	22
38	Assessment of mercury pollution sources in beach sand and coastal soil by speciation analysis. Environmental Sciences Europe, 2019, 31, .	2.6	11
39	Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. Journal of Hazardous Materials, 2018, 350, 55-65.	6.5	45
40	Combining raw and compositional data to determine the spatial patterns of Potentially Toxic Elements in soils. Science of the Total Environment, 2018, 631-632, 1117-1126.	3.9	20
41	GEOCHEMICAL EVALUATION OF CRUDE OILS FROM THE CARACARA AND TIPLE AREAS, EASTERN LLANOS BASIN, COLOMBIA: PALAEO BIODEGRADATION AND OIL MIXING. Journal of Petroleum Geology, 2018, 41, 113-134.	0.9	6
42	Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment, 2018, 610-611, 820-830.	3.9	41
43	Mineral Processing Technologies for the Remediation of Soils Polluted by Trace Elements. Proceedings (mdpi), 2018, 2, 1458.	0.2	0
44	Environmental Forensic Study and Remediation Feasibility in an Abandoned Industrial Site. Proceedings (mdpi), 2018, 2, 1503.	0.2	3
45	Environmental Threats of Ancient Pb Mining and Metallurgical Activities in the Linares Mining District (Southern Spain). Proceedings (mdpi), 2018, 2, 1459.	0.2	1
46	Environmental Forensics Study of Crude Oil and Petroleum Product Spills in Coastal and Oilfield Settings. , 2018, , 131-155.		4
47	Optimization of Landfarming Amendments Based on Soil Texture and Crude Oil Concentration. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	20
48	Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration, 2017, 174, 10-20.	1.5	96
49	Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Science of the Total Environment, 2017, 584-585, 1324-1332.	3.9	101
50	Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Applied and Environmental Microbiology, 2017, 83, .	1.4	105
51	Enhanced Soil Washing for the Remediation of a Brownfield Polluted by Pyrite Ash. Soil and Sediment Contamination, 2017, 26, 377-390.	1.1	7
52	An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption. Journal of Hazardous Materials, 2017, 325, 1-7.	6.5	67
53	Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Science of the Total Environment, 2017, 603-604, 167-177.	3.9	31
54	Analyzing coastal environments by means of functional data analysis. Sedimentary Geology, 2017, 357, 99-108.	1.0	6

#	Article	IF	CITATIONS
55	Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere, 2017, 183, 546-556.	4.2	40
56	Geochemical study of a mining-metallurgy site polluted with As and Hg and the transfer of these contaminants to Equisetum sp. Journal of Geochemical Exploration, 2017, 182, 1-9.	1.5	17
57	Diagnostic ratios for the rapid evaluation of natural attenuation of heavy fuel oil pollution along shores. Chemosphere, 2017, 184, 1089-1098.	4.2	15
58	Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash. Journal of Cleaner Production, 2017, 142, 2693-2699.	4.6	32
59	Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage. Frontiers in Microbiology, 2017, 8, 1756.	1.5	88
60	Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach. Science of the Total Environment, 2016, 563-564, 683-692.	3.9	38
61	Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environment International, 2016, 94, 436-448.	4.8	84
62	Biomarkers and inorganic proxies in the paleoenvironmental reconstruction of mires: The importance of landscape in Las Conchas (Asturias, Northern Spain). Organic Geochemistry, 2016, 95, 41-54.	0.9	25
63	A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere, 2016, 149, 137-145.	4.2	111
64	Intra- and inter-field compositional changes of oils from the Misoa B4 reservoir in the Ceuta Southeast Area (Lake Maracaibo, Venezuela). Fuel, 2016, 167, 118-134.	3.4	14
65	Element enrichment factor calculation using grain-size distribution and functional data regression. Chemosphere, 2015, 119, 1192-1199.	4.2	10
66	Pyrolysis GC–MS for the rapid environmental forensic screening of contaminated brownfield soil. Organic Geochemistry, 2015, 87, 9-20.	0.9	20
67	Comprehensive waste characterization and organic pollution co-occurrence in a Hg and As mining and metallurgy brownfield. Journal of Hazardous Materials, 2015, 300, 561-571.	6.5	58
68	Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME Journal, 2014, 8, 1259-1274.	4.4	105
69	Origin, patterns and anthropogenic accumulation of potentially toxic elements (PTEs) in surface sediments of the Avilés estuary (Asturias, northern Spain). Marine Pollution Bulletin, 2014, 86, 530-538.	2.3	29
70	Optimisation of magnetic separation: A case study for soil washing at a heavy metals polluted site. Chemosphere, 2014, 107, 290-296.	4.2	25
71	Design and field-scale implementation of an "on site―bioremediation treatment in PAH-polluted soil. Environmental Pollution, 2013, 181, 190-199	3.7	39
72	Functional data analysis as a tool to correlate textural and geochemical data. Applied Mathematics and Computation, 2013, 223, 476-482.	1.4	6

José R Gallego

#	Article	IF	CITATIONS
73	Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000calyr BP. Science of the Total Environment, 2013, 454-455, 16-29.	3.9	56
74	Using gas geochemistry to delineate structural compartments and assess petroleum reservoir-filling directions: A Venezuelan case study. Journal of South American Earth Sciences, 2013, 43, 1-7.	0.6	9
75	Functional outlier detection in grain-size distribution curves of detrital sediments. Sedimentary Geology, 2013, 297, 31-37.	1.0	4
76	High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy. Journal of Hazardous Materials, 2013, 248-249, 194-201.	6.5	28
77	Compositional variability in oils and formation waters from the Ayoluengo and HontomÃn fields (Burgos, Spain). Implications for assessing biodegradation and reservoir compartmentalization. Organic Geochemistry, 2013, 54, 125-139.	0.9	13
78	Nanofiltration of Acid Mine Drainage in an Abandoned Mercury Mining Area. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	32
79	GEOCHEMICAL COMPOSITION OF BEACH TAR FROM THE SE COAST OF THE PARIA PENINSULA, NE VENEZUELA: DERIVATION FROM NATURAL SEEPAGES. Journal of Petroleum Geology, 2013, 36, 179-193.	0.9	2
80	Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME Journal, 2013, 7, 122-136.	4.4	124
81	Geochemistry and chemostratigraphy of the Colón-Mito Juan units (Campanian-Maastrichtian), Venezuela: Implications for provenance, depositional conditions, and stratigraphic subdivision. Geochemical Journal, 2013, 47, 537-546.	0.5	3
82	n-Alkan-2-ones in peat-forming plants from the Roñanzas ombrotrophic bog (Asturias, northern) Tj ETQq0 0 0 rg	BT /Overlo 0.9	ock_{59} 10 Tf 50
83	Feasibility study on the use of soil washing to remediate the As–Hg contamination at an ancient mining and metallurgy area. Journal of Hazardous Materials, 2011, 196, 93-100.	6.5	49
84	Full-Scale Remediation of a Jet Fuel-Contaminated Soil: Assessment of Biodegradation, Volatilization, and Bioavailability. Water, Air, and Soil Pollution, 2011, 217, 197-211.	1.1	27
85	Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. Journal of Hazardous Materials, 2010, 180, 602-608.	6.5	47
86	CRUDE OIL BIODEGRADATION AND ENVIRONMENTAL FACTORS AT THE RIUTORT OIL SHALE MINE, SE PYRENEES. Journal of Petroleum Geology, 2010, 33, 123-139.	0.9	14
87	Palaeoenvironmental reconstruction of Northern Spain during the last 8000calyr BP based on the biomarker content of the Roñanzas peat bog (Asturias). Organic Geochemistry, 2010, 41, 454-466.	0.9	66
88	Weathering processes only partially limit the potential for bioremediation of hydrocarbon-contaminated soils. Organic Geochemistry, 2010, 41, 896-900.	0.9	18
89	Bioremediation of Petroleum Hydrocarbons in Cold Regions - Edited by Dennis M Filler, Ian Snape and David L Barnes. Geographical Journal, 2009, 175, 323-323.	1.6	0
90	Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 2007, 43, 310-321.	1.4	51

#	Article	IF	CITATIONS
91	Bioremediation for Shoreline Cleanup: In Situ vs. On-Site Treatments. Environmental Engineering Science, 2007, 24, 493-504.	0.8	28
92	Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia. Biodegradation, 2007, 18, 269-281.	1.5	76
93	Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Organic Geochemistry, 2006, 37, 1869-1884.	0.9	59
94	Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2. Applied Catalysis B: Environmental, 2006, 67, 279-289.	10.8	47
95	Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environment International, 2002, 27, 589-596.	4.8	129
96	Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 2001, 12, 325-335.	1.5	218
97	Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern) Tj ETQq1 1	0.784314 1.5	4 rgBT /Over

On Site Bioremediation and Washing Techniques in a Cobble Beach Affected by Prestige Oil Spill. , 0, , 556-560.

0