Constance A Harrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6340052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variable-density thinning promotes differential recruitment and development of shade tolerant conifer species after 17 years. New Forests, 2021, 52, 329-348.	1.7	1
2	Effects of variable-density thinning on non-native understory plants in coniferous forests of the Pacific Northwest. Forest Ecology and Management, 2021, 502, 119699.	3.2	4
3	A Direct Measure of Stand Density Based on Stand Growth. Forest Science, 2021, 67, 103-115.	1.0	7
4	Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology, 2020, 280, 107803.	4.8	37
5	Projected impacts of climate change on the range and phenology of three culturally-important shrub species. PLoS ONE, 2020, 15, e0232537.	2.5	19
6	Survival, and Growth Response of Douglas-Fir Trees to Increasing Levels of Bole, Root, and Crown Damage. Forest Science, 2019, 65, 143-155.	1.0	2
7	Modeling Wound-Closure Response Over Time in Douglas-Fir Trees. Forest Science, 2019, 65, 156-163.	1.0	9
8	The timing of flowering in Douglas-fir is determined by cool-season temperatures and genetic variation. Forest Ecology and Management, 2018, 409, 729-739.	3.2	7
9	Variable density thinning promotes variable structural responses 14†years after treatment in the Pacific Northwest. Forest Ecology and Management, 2018, 410, 114-125.	3.2	18
10	Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder (<i>Alnus rubra)</i> . PeerJ, 2018, 6, e5221.	2.0	2
11	Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameterâ€growth cessation in coast Douglasâ€fir. Global Change Biology, 2017, 23, 3348-3362.	9.5	23
12	Emerging climateâ€driven disturbance processes: widespread mortality associated with snowâ€ŧoâ€ŧain transitions across 10° of latitude and half the range of a climateâ€ŧhreatened conifer. Global Change Biology, 2017, 23, 2903-2914.	9.5	35
13	Climate of seed source affects susceptibility of coastal Douglasâ€fir to foliage diseases. Ecosphere, 2017, 8, e02011.	2.2	19
14	The Distribution of Tree Roots in Douglas-fir Forests in the Pacific Northwest in Relation to Depth, Space, Coarse Organic Matter and Mineral Fragments. Northwest Science, 2017, 91, 326-343.	0.2	3
15	Will changes in phenology track climate change? A study of growth initiation timing in coast Douglasâ€fir. Global Change Biology, 2016, 22, 3712-3723.	9.5	77
16	Tolerance to multiple climate stressors: a case study of Douglasâ€fir drought and cold hardiness. Ecology and Evolution, 2016, 6, 2074-2083.	1.9	34
17	Morphology and Accumulation of Epicuticular Wax on Needles of Douglas-fir (Pseudotsuga) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf
	Impact of climate change on cold hardiness of Douglasâ€fir (<i>PseudotsugaÂmenziesii</i>):		

Impact of climate change on cold hardiness of Douglasâ€ir (<i>PseudotsugaAmenziesii</i>): environmental and genetic considerations. Global Change Biology, 2015, 21, 3814-3826.

9.5 39

#	Article	IF	CITATIONS
19	Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Frontiers in Plant Science, 2015, 6, 120.	3.6	62
20	Climateâ€related genetic variation in droughtâ€resistance of Douglasâ€fir (<i>Pseudotsuga menziesii</i>). Global Change Biology, 2015, 21, 947-958.	9.5	78
21	Restoration release of overtopped Oregon white oak increases 10-year growth and acorn production. Forest Ecology and Management, 2013, 291, 87-95.	3.2	15
22	Tree growth ten years after residual biomass removal, soil compaction, tillage, and competing vegetation control in a highly-productive Douglas-fir plantation. Forest Ecology and Management, 2013, 305, 60-66.	3.2	30
23	Field Note: Growth and Survival of Port-Orford-Cedar Families on Three Sites on the South Oregon Coast. Western Journal of Applied Forestry, 2012, 27, 156-158.	0.5	1
24	Growth of Oregon White Oak (<i>Quercus garryana</i>). Northwest Science, 2011, 85, 159-171.	0.2	13
25	Incorporating genetic variation into a model of budburst phenology of coast Douglas-fir (<i>Pseudotsuga menziesii</i> var. <i>menziesii</i>). Canadian Journal of Forest Research, 2011, 41, 139-150.	1.7	21
26	Factors affecting diurnal stem contraction in young Douglas-fir. Agricultural and Forest Meteorology, 2011, 151, 414-419.	4.8	36
27	Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. Forest Ecology and Management, 2011, 261, 1121-1142.	3.2	210
28	Five-year vegetation control effects on aboveground biomass and nitrogen content and allocation in Douglas-fir plantations on three contrasting sites. Forest Ecology and Management, 2011, 262, 2187-2198.	3.2	20
29	Intra-annual growth and mortality of four Populus clones in pure and mixed plantings. New Forests, 2010, 39, 287-299.	1.7	11
30	Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management, 2010, 259, 798-808.	3.2	191
31	Midcanopy growth following thinning in young-growth conifer forests on the Olympic Peninsula western Washington. Forest Ecology and Management, 2010, 259, 1606-1614.	3.2	29
32	Acorn storage alternatives tested on Oregon white oak. Native Plants Journal, 2010, 11, 65-76.	0.2	2
33	Six years of plant community development after clearcut harvesting in western Washington. Canadian Journal of Forest Research, 2009, 39, 308-319.	1.7	14
34	The possible roles of nutrient deprivation and auxin repression in apical control. Trees - Structure and Function, 2009, 23, 489-500.	1.9	14
35	Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Ecology and Management, 2009, 258, 18-25. 	3.2	48
36	Synchronicity and Geographic Variation in Oregon White Oak Acorn Production in the Pacific Northwest. Northwest Science, 2009, 83, 117-130.	0.2	12

#	Article	IF	CITATIONS
37	Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State, USA. Canadian Journal of Forest Research, 2009, 39, 1119-1132.	1.7	30
38	Western redcedar response to precommercial thinning and fertilization through 25Âyears posttreatment. Canadian Journal of Forest Research, 2009, 39, 619-628.	1.7	29
39	Vegetation control effects on untreated wood, crude cellulose and holocellulose δ13C of early and latewood in 3- to 5-year-old rings of Douglas-fir. Trees - Structure and Function, 2008, 22, 603-609.	1.9	8
40	Extending sapwood — Leaf area relationships from stems to roots in Coast Douglas-fir. Annals of Forest Science, 2008, 65, 802-802.	2.0	13
41	Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests. Forest Ecology and Management, 2008, 255, 2771-2781.	3.2	71
42	Prediction of Growth and Mortality of Oregon White Oak in the Pacific Northwest. Western Journal of Applied Forestry, 2008, 23, 26-33.	0.5	3
43	Release of Oregon White Oak from Overtopping Douglas-fir: Effects on Soil Water and Microclimate. Northwest Science, 2007, 81, 112-124.	0.2	14
44	Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation. Agricultural and Forest Meteorology, 2007, 145, 125-138.	4.8	71
45	Does Variable-Density Thinning Increase Wind Damage in Conifer Stands on the Olympic Peninsula?. Western Journal of Applied Forestry, 2007, 22, 285-296.	0.5	9
46	Laminated Root Rot and Fumigant Injection Affect Survival and Growth of Douglas-Fir. Western Journal of Applied Forestry, 2007, 22, 220-227.	0.5	4
47	Post-Planting Treatments Increase Growth of Oregon White Oak (Quercus garryana Dougl. ex Hook.) Seedlings. Restoration Ecology, 2007, 15, 212-222.	2.9	48
48	Conifer–Ceanothus interactions influence tree growth before and after shrub removal in a forest plantation in the western Cascade Mountains, USA. Forest Ecology and Management, 2006, 229, 183-194.	3.2	10
49	Changes in Oregon white oak (Quercus garryana Dougl. ex Hook.) following release from overtopping conifers. Trees - Structure and Function, 2006, 20, 747-756.	1.9	36
50	Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. Forest Ecology and Management, 2005, 205, 333-350.	3.2	100
51	Cold Stratification of Pacific Madrone Seeds. Native Plants Journal, 2004, 5, 66-74.	0.2	2
52	Patterns of Survival, Damage, and Growth for Western White Pine in a 16-Year-Old Spacing Trial in Western Washington. Western Journal of Applied Forestry, 2003, 18, 35-43.	0.5	12
53	Density and rectangularity of planting influence 20-year growth and development of red alder. Canadian Journal of Forest Research, 2002, 32, 1244-1253.	1.7	21
54	Fate of Overstory Trees and Patterns of Regeneration 12 Years After Clearcutting with Reserve Trees in Southwest Washington. Western Journal of Applied Forestry, 2002, 17, 78-85.	0.5	18

CONSTANCE A HARRINGTON

#	Article	IF	CITATIONS
55	Small mammals in young forests: implications for management for sustainability. Forest Ecology and Management, 2001, 154, 289-309.	3.2	120
56	Propagating Native Species: Experience at the Wind River Nursery. Western Journal of Applied Forestry, 1999, 14, 61-64.	0.5	8
57	Reverse Technology Transfer: Obtaining Feedback from Managers. Western Journal of Applied Forestry, 1999, 14, 153-163.	0.5	4
58	Forests planted for ecosystem restoration or conservation. New Forests, 1999, 17, 175-190.	1.7	42
59	Tree growth and stand development of four Populus clones in large monoclonal plots. New Forests, 1997, 14, 1-18.	1.7	32
60	Gain efficiency in short-term testing: experimental results. Canadian Journal of Forest Research, 1992, 22, 290-297.	1.7	15
61	Retrospective shoot growth analysis for three seed sources of loblolly pine. Canadian Journal of Forest Research, 1991, 21, 306-317.	1.7	13
62	Yield Comparison of Three Douglas-Fir Plantations on Former Farmland in Western Washington. Western Journal of Applied Forestry, 1990, 5, 123-126.	0.5	1
63	Growth and foliar nutrient response to fertilization and precommercial thinning in a coastal western red cedar stand. Canadian Journal of Forest Research, 1990, 20, 764-773.	1.7	18
64	Effects of root severing treatments on loblolly pine. Canadian Journal of Forest Research, 1988, 18, 1376-1385.	1.7	21
65	Cross-sectional area relationships in root systems of loblolly and shortleaf pine. Canadian Journal of Forest Research, 1987, 17, 556-558.	1.7	22
66	Site-Index Comparisons for Naturally Seeded Loblolly Pine and Shortleaf Pine. Southern Journal of Applied Forestry, 1987, 11, 86-91.	0.3	1
67	Responses of red alder and black cottonwood seedlings to flooding. Physiologia Plantarum, 1987, 69, 35-48.	5.2	57
68	Foliar chemical concentrations, growth, and site productivity relations in western red cedar. Canadian Journal of Forest Research, 1986, 16, 1069-1075.	1.7	32
69	Effects of irrigation, pulp mill sludge, and repeated coppicing on growth and yield of black cottonwood and red alder. Canadian Journal of Forest Research, 1984, 14, 844-849.	1.7	18
70	Litterfall and nutrient returns in red alder stands in western Washington. Plant and Soil, 1984, 79, 343-351.	3.7	21
71	Factors influencing initial sprouting of red alder. Canadian Journal of Forest Research, 1984, 14, 357-361.	1.7	50
72	Sitka alder, a candidate for mixed stands. Canadian Journal of Forest Research, 1982, 12, 108-111.	1.7	10

#	Article	IF	CITATIONS
73	Variation in specific gravity of red alder (<i>Alnusrubra</i> Bong.). Canadian Journal of Forest Research, 1980, 10, 293-299.	1.7	9