Van Thanh Dau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339957/publications.pdf

Version: 2024-02-01

257101 1,597 140 24 citations h-index papers

g-index 141 141 141 816 docs citations times ranked citing authors all docs

414034

32

#	Article	IF	CITATIONS
1	Electric Field-Enhanced Electrohydrodynamic Process For Fabrication of Highly Sensitive Piezoelectric Sensor., 2022,,.		2
2	The concept of light-harvesting, self-powered mechanical sensors using a monolithic structure. Nano Energy, 2022, 96, 107030.	8.2	10
3	Ultrasensitive Self-Powered Position-Sensitive Detector Based on n-3C-SiC/p-Si Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 768-775.	2.0	9
4	Enhanced Electrohydrodynamics for Electrospinning a Highly Sensitive Flexible Fiber-Based Piezoelectric Sensor. ACS Applied Electronic Materials, 2022, 4, 1301-1310.	2.0	15
5	Light-Harvesting Self-Powered Monolithic-Structure Temperature Sensing Based on 3C-SiC/Si Heterostructure. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22593-22600.	4.0	3
6	Multimodal Fibrous Static and Dynamic Tactile Sensor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27317-27327.	4.0	11
7	Simultaneous Generation and Delivery of Neutral Polymeric Aerosol by Electro-Hydrodynamic Nebulizer. , 2022, , .		1
8	Stretchable, Skin-Breathable, and Ultrasensitive Respiration Sensor Using Graphite on Paper With Smart Structures. IEEE Sensors Journal, 2022, 22, 16804-16810.	2.4	3
9	Giant Piezotronic Effect by Photoexcitation–Electronic Coupling in a p-GaN/AlGaN/GaN Heterojunction. ACS Applied Electronic Materials, 2022, 4, 2648-2655.	2.0	O
10	Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS Nano, 2022, 16, 10890-10903.	7.3	17
11	Physical Sensors: Thermal Sensors. , 2021, , .		1
12	Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Materials Horizons, 2021, 8, 2123-2150.	6.4	61
13	A Wearable, Bending-Insensitive Respiration Sensor Using Highly Oriented Carbon Nanotube Film. IEEE Sensors Journal, 2021, 21, 7308-7315.	2.4	20
14	Numerical Study and Experimental Investigation of an Electrohydrodynamic Device for Inertial Sensing., 2021,,.		0
15	In-Situ Depostion of Pressure and Temperature Sensitive E-Skin for Robotic Applications., 2021,,.		1
16	Invited Talk: Flexible electronics fabricated by electric field- enhanced electrospinning., 2021,,.		0
17	Piezoresistive Effect with a Gauge Factor of 18†000 in a Semiconductor Heterojunction Modulated by Bonded Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35046-35053.	4.0	11
18	Effect of axisymmetric magnetic field strength on heat transfer from a current-carrying micro-wire in ferrofluid. International Journal of Thermal Sciences, 2021, 167, 106976.	2.6	6

#	Article	IF	CITATIONS
19	Pressure and temperature sensitive e-skin for in situ robotic applications. Materials and Design, 2021, 208, 109886.	3.3	38
20	Design and development of a microfluidic droplet generator with vision sensing for lab-on-a-chip devices. Sensors and Actuators A: Physical, 2021, 332, 113047.	2.0	23
21	Characterization of Gelatin and PVA Nanofibers Fabricated Using Electrospinning Process. Lecture Notes in Networks and Systems, 2021, , 216-222.	0.5	O
22	Study on Thermal Convective Gas Gyroscope Based on Corona Discharge Ion Wind and Coriolis Effect. Lecture Notes in Networks and Systems, 2021, , 741-747.	0.5	0
23	Generation of a Charge Carrier Gradient in a 3C-SiC/Si Heterojunction with Asymmetric Configuration. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS APPLI	4.0	9
24	Seebeck coefficient in SiC/Si heterojunction for self-powered thermal sensor., 2021,,.		1
25	Ultrasensitive strain sensor enhanced by Bonded Light Emitting Diodes. , 2021, , .		0
26	Low-power static and dynamic tactile sensing using in-situ fabricated PVDF-TrFE e-skin., 2021,,.		2
27	Design and fabrication of paper-based stretchable sensor for respiration monitoring., 2021,,.		1
28	Rapid Fabrication of High-responsivity Photodetectors Utilizing AlGaN/GaN on Sapphire., 2021,,.		0
29	A Robust Two-axis Tilt Angle Sensor Based on Air/Liquid Two-phase Dielectric Capacitive Sensing Structure. IETE Journal of Research, 2020, 66, 685-696.	1.8	5
30	Simulation and Experimental Study of a Synthetic Jet Valveless Pump. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1162-1170.	3.7	16
31	A new structure of Tesla coupled nozzle in synthetic jet micro-pump. Sensors and Actuators A: Physical, 2020, 315, 112296.	2.0	15
32	An electrohydrodynamic gyroscope. Sensors and Actuators A: Physical, 2020, 315, 112291.	2.0	4
33	Wearable Fluidic Strain Sensor for Human Motion Sensing. , 2020, , .		2
34	Design and development of an automated fluid management system for endoscopy aided gynaecological surgeries. IOP Conference Series: Materials Science and Engineering, 2020, 922, 012008.	0.3	1
35	Self-powered monolithic accelerometer using a photonic gate. Nano Energy, 2020, 76, 104950.	8.2	18
36	Advances in Rational Design and Materials of Highâ∈Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	5.2	46

#	Article	IF	CITATIONS
37	Charge reduced nanoparticles by sub-kHz ac electrohydrodynamic atomization toward drug delivery applications. Applied Physics Letters, 2020, 116 , .	1.5	14
38	Calcium phosphate stability on melt electrowritten PCL scaffolds. Journal of Science: Advanced Materials and Devices, 2020, 5, 30-39.	1.5	8
39	Lithography and Etchingâ€Free Microfabrication of Silicon Carbide on Insulator Using Direct UV Laser Ablation. Advanced Engineering Materials, 2020, 22, 1901173.	1.6	7
40	High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. Journal of Hazardous Materials, 2020, 394, 122486.	6.5	15
41	Flexible and Wearable Flow Sensor Using Spinnable Carbon Nanotube Nanofilm for Respiration Monitoring. , 2020, , .		3
42	Study on Point-to-Ring Corona Based Gyroscope., 2019,,.		3
43	Angular Rate Sensing by Circulatory Vortex Flow: Design, Simulation and Experiment. , 2019, , .		0
44	Dielectrophoresis can control the density of CNT membranes as confirmed by experiment and dissipative particle simulation. Carbon, 2019, 155, 279-286.	5.4	10
45	Soft ionic liquid multi-point touch sensor. RSC Advances, 2019, 9, 10733-10738.	1.7	8
46	A Circulatory Ionic Wind for Inertial Sensing Application. IEEE Electron Device Letters, 2019, 40, 1182-1185.	2.2	8
47	Polyacrylonitrileâ€carbon Nanotubeâ€polyacrylonitrile: A Versatile Robust Platform for Flexible Multifunctional Electronic Devices in Medical Applications. Macromolecular Materials and Engineering, 2019, 304, 1900014.	1.7	17
48	Liquid Pumping and Mixing by Pzt Synthetic Jet., 2019,,.		1
49	Study on Flow-Focusing Microfluidic Device with External Electric Field for Droplet Generation. Lecture Notes in Networks and Systems, 2019, , 553-559.	0.5	1
50	Experimental Characterization of an Ionically Conductive Fluid Based High Flexibility Strain Sensor. Lecture Notes in Networks and Systems, 2019, , 318-323.	0.5	2
51	Low-Cost Multifunctional Ionic Liquid Pressure and Temperature Sensor. Smart Innovation, Systems and Technologies, 2019, , 184-192.	0.5	2
52	Carbon Nanotube Four-Terminal Devices for Pressure Sensing Applications. Smart Innovation, Systems and Technologies, 2019, , 199-207.	0.5	1
53	Fluidic mechanism for dual-axis gyroscope. Mechanical Systems and Signal Processing, 2018, 108, 73-87.	4.4	19
54	Dual-pin electrohydrodynamic generator driven by alternating current. Experimental Thermal and Fluid Science, 2018, 97, 290-295.	1.5	9

#	Article	IF	CITATIONS
55	Dielectrophoresis Microfluidic Enrichment Platform with Built-In Capacitive Sensor for Rare Tumor Cell Detection. Biochip Journal, 2018, 12, 114-122.	2.5	24
56	Tri-axis convective accelerometer with closed-loop heat source. Sensors and Actuators A: Physical, 2018, 275, 51-59.	2.0	10
57	Robust Angular Rate Sensor Based on Corona Discharge Ion Wind. , 2018, , .		1
58	A Closed Device to Generate Vortex Flow Using PZT., 2018,,.		0
59	Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors, 2018, 18, 3300.	2.1	17
60	A valveless micropump based on additive fabrication technology. International Journal of Nanotechnology, 2018, 15, 1010.	0.1	5
61	A study of angular rate sensing by corona discharge ion wind. Sensors and Actuators A: Physical, 2018, 277, 169-180.	2.0	16
62	Particle precipitation by bipolar corona discharge ion winds. Journal of Aerosol Science, 2018, 124, 83-94.	1.8	18
63	Design and Simulation of MEMS Based Piezoresitive Pressure Sensor for Microfluidic Applications. , 2018, , .		2
64	Transient Characteristics of a Fluidic Device for Circulatory Jet Flow. Sensors, 2018, 18, 849.	2.1	5
65	Development of PZT Actuated Valveless Micropump. Sensors, 2018, 18, 1302.	2.1	53
66	Estimating the effect of asymmetric electrodes in bipolar discharge ion wind generator. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 900-907.	1.8	6
67	Vortex flow generator utilizing synthetic jets by diaphragm vibration. International Journal of Mechanical Sciences, 2018, 142-143, 432-439.	3.6	9
68	Development of new electrostatic micro cam system driven by elastic wings. Microsystem Technologies, 2017, 23, 5669-5675.	1.2	3
69	Corona anemometry using dual pin probe. Sensors and Actuators A: Physical, 2017, 257, 185-193.	2.0	13
70	Jet flow in a circulatory miniaturized system using ion wind. Mechatronics, 2017, 47, 126-133.	2.0	28
71	Ionic JET flow in a circulatory miniaturized system. , 2017, , .		2
72	Coplanar differential capacitively coupled contactless conductivity detection (CD-C4D) sensor for micro object inside fluidic flow recognization., 2017,,.		1

#	Article	IF	Citations
73	Computational and experimental study on ion wind scheme based aerosol sampling for biomedical applications. , 2017, , .		2
74	Dielectrophoresis enrichment with built-in capacitive sensor microfluidic platform for tumor rare cell detection. , 2017 , , .		1
75	A symmetrically arranged electrodes for corona discharge anemometry. , 2017, , .		1
76	Jet flow focusing by corona discharge for fluidic application. , 2016, , .		2
77	Bipolar corona discharge based air flow generation with low net charge. Sensors and Actuators A: Physical, 2016, 244, 146-155.	2.0	37
78	Bipolar corona assisted jet flow for fluidic application. Flow Measurement and Instrumentation, 2016, 50, 252-260.	1.0	28
79	Piezo-resistive and thermo-resistance effects of highly-aligned CNT based macrostructures. RSC Advances, 2016, 6, 106090-106095.	1.7	20
80	lon Wind Generator Utilizing Bipolar Discharge in Parallel Pin Geometry. IEEE Transactions on Plasma Science, 2016, 44, 2979-2987.	0.6	26
81	Corona based air-flow using parallel discharge electrodes. Experimental Thermal and Fluid Science, 2016, 79, 52-56.	1.5	43
82	Pressure sensor based on bipolar discharge corona configuration. Sensors and Actuators A: Physical, 2016, 237, 81-90.	2.0	26
83	Absolute pressure sensing with bipolar corona discharge: Design, simulation and experimental validation. , 2016, , .		2
84	Jet flow generation in a circulatory miniaturized system. Sensors and Actuators B: Chemical, 2016, 223, 820-826.	4.0	28
85	Phytophthora stem rot of purple passionfruit in Vietnam. Australasian Plant Disease Notes, 2015, 10, 1.	0.4	5
86	Study on the PZT diaphragm actuated multiple jet flow in a circulatory miniaturized system. , 2015, , .		5
87	Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications. Sensors and Actuators B: Chemical, 2015, 221, 1077-1083.	4.0	47
88	Design Study of Multidirectional Jet Flow for a Triple-Axis Fluidic Gyroscope. IEEE Sensors Journal, 2015, 15, 4103-4113.	2.4	25
89	Development of a jet-generator and its application to angular rate sensor. , 2015, , .		4
90	Study of valveless electromagnetic micropump by volume-of-fluid and OpenFOAM. Japanese Journal of Applied Physics, 2015, 54, 057201.	0.8	16

#	Article	IF	Citations
91	A micromirror with CNTs hinge fabricated by the integration of CNTs film into a MEMS actuator. Journal of Micromechanics and Microengineering, 2013, 23, 075024.	1.5	12
92	Integration of CNTs thin film for sensing and actuating micro structures. Vietnam Journal of Mechanics, 2012, 34, 299-309.	0.2	1
93	Fabrication and characterization of silicon micro mirror with CNT hinge. , 2011, , .		1
94	A dynamic model for studying valveless electromagnetic micropumps. Journal of Micromechanics and Microengineering, 2011, 21, 025015.	1.5	12
95	Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomedical Microdevices, 2011, 13, 123-129.	1.4	35
96	First report of <i>Neocosmospora vasinfecta </i> li>associated with the root rot complex of peanuts in Vietnam. Australasian Plant Disease Notes, 2010, 5, 79.	0.4	11
97	Integrated CNTs thin film for MEMS mechanical sensors. Microelectronics Journal, 2010, 41, 860-864.	1.1	26
98	Fluidic device with pumping and sensing functions for precise flow control. Sensors and Actuators B: Chemical, 2010, 150, 819-824.	4.0	29
99	Towards highly sensitive strain sensing based on nanostructured materials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045012.	0.7	8
100	Integration of SWNT film into MEMS for a micro-thermoelectric device. Smart Materials and Structures, 2010, 19, 075003.	1.8	25
101	Microfluidic valveless pump actuated by electromagnetic force. , 2009, , .		8
102	A cross-junction channel valveless-micropump with integrated hotwires for fluidic application. , 2009, , .		0
103	Sensitivity enhancement of piezoresistive micro acceleration sensors with Nanometer Stress Concentration Regions on sensing elements. , 2009, , .		3
104	Ultra miniature novel three-axis micro accelerometer., 2009,,.		7
105	A MEMS-based silicon micropump with intersecting channels and integrated hotwires. Journal of Micromechanics and Microengineering, 2009, 19, 125016.	1.5	32
106	Piezoresistive and thermoelectric effects of CNT thin film patterned by EB lithography. , 2009, , .		2
107	A cross-junction channel valveless-micropump with PZT actuation. Microsystem Technologies, 2009, 15, 1039-1044.	1.2	33
108	First report of Fusarium wilt of watermelon in Vietnam. Australasian Plant Disease Notes, 2009, 4, 1.	0.4	21

#	Article	IF	CITATIONS
109	Design and fabrication of convective inertial sensor consisting of 3DOF gyroscope and 2DOF accelerometer., 2009,,.		21
110	Study on geometry of valveless-micropump. , 2009, , .		4
111	Design and Simulation of a Valveless Micro Pump. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2009, 3, 69-75.	0.3	2
112	Simulation and Fabrication of a Convective Gyroscope. IEEE Sensors Journal, 2008, 8, 1530-1538.	2.4	24
113	Design and Simulation of Convective Inertial Sensor. , 2008, , .		4
114	Numerical design and performance of a valveless micropump. , 2008, , .		2
115	A multi axis fluidic inertial sensor. , 2008, , .		22
116	Fabrication and Basic Characterization of a Piezoelectric Valveless Micro Jet Pump. Japanese Journal of Applied Physics, 2008, 47, 8615.	0.8	32
117	Design and Simulation of Piezoresistive Micro Accelerometers for Wearable Sensing Applications. , 2008, , .		1
118	Stem and root rot ofTelosma cordatacaused byPhytophthora palmivorain Vietnam – a newly recognised disease. Australasian Plant Disease Notes, 2008, 3, 135.	0.4	5
119	Fabrication of a gas flow device consisting of micro-jet pump and flow sensor. Proceedings of SPIE, 2008, , .	0.8	0
120	Design and Simulation of a Novel 3-DOF MEMS Convective Gyroscope. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 219-224.	0.0	22
121	First report ofPhoma terrestriscausing pink root rot of Chinese onion in Vietnam. Australasian Plant Disease Notes, 2008, 3, 147.	0.4	3
122	Convective Gas Gyroscope Based on Thermo-Resistive Effect in Si P-N Junction., 2007,,.		12
123	A 2-DOF convective micro accelerometer with a low thermal stress sensing element. Smart Materials and Structures, 2007, 16, 2308-2314.	1.8	32
124	Design and fabrication process of a micropump using bulk Pb(Zr,Ti)O 3 for microfluidic devices. , 2007, 6800, 439.		2
125	A Fully Integrated MEMS-Based Convective 3-DOF Gyroscope. , 2007, , .		8
126	Design and Fabrication of a Convective 3-DOF Angular Rate Sensor., 2007,,.		3

#	Article	IF	CITATIONS
127	Development of a Dual-Axis Convective Gyroscope With Low Thermal-Induced Stress Sensing Element. Journal of Microelectromechanical Systems, 2007, 16, 950-958.	1.7	30
128	Optimization of PZT Diaphragm Pump for the Convective Gyroscope. IEEJ Transactions on Sensors and Micromachines, 2007, 127, 347-352.	0.0	2
129	Development of a Dual Axis Convective Gyroscope with Embedded Heater and Low Thermal-stress Thermistors. , 2006, , .		O
130	A Dual Axis Accelerometer Utilizing Low Doped Silicon Thermistor. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 190-194.	0.0	8
131	Development of a dual-axis thermal convective gas gyroscope. Journal of Micromechanics and Microengineering, 2006, 16, 1301-1306.	1.5	56
132	Fabrication and Characterization of 2-DOF Micro Convective Accelerometer., 2006,,.		3
133	Development of micro motion sensors based on piezoresistive and thermo-resistive effects in silicon. , 2005, , .		0
134	A dual axis thermal convective silicon gyroscope., 0,,.		11
135	A dual axis silicon gyroscope based on thermal convective effect. , 0, , .		0
136	Development of a 3-DOF silicon piezoresistive micro accelerometer. , 0, , .		3
137	Optimization and characterizations of the dual axis gas gyroscope. , 0, , .		O
138	Adual Axis Gas Gyroscope Based on Convective and Thermo-Resistive Effects in Silicon with Low Thermal-Induced Stress Sensing Element. , 0, , .		5
139	Comparison of Bonding of Bulk PZT to Silicon by Intermediate Glass Layer and by Intermediate Au Layer. Materials Science Forum, 0, 663-665, 490-493.	0.3	0
140	Fabrication of Piezoelectric Vibration Power Harvester using Bulk PZT. Key Engineering Materials, 0, 483, 631-634.	0.4	1