Mitsuru Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339736/publications.pdf

Version: 2024-02-01

	394421	454955
1,056	19	30
citations	h-index	g-index
5/	5/	993
docs citations	times ranked	citing authors
	citations 57	1,056 19 citations h-index 57 57

#	Article	IF	Citations
1	Laser Desorption Ionization–Mass Spectrometry with Graphite Carbon Black Nanoparticles for Simultaneous Detection of Taste- and Odor-Active Compounds. ACS Applied Nano Materials, 2022, 5, 2187-2194.	5.0	9
2	Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach. Analytical Chemistry, 2022, 94, 1990-1998.	6.5	7
3	Current Knowledge on Intestinal Absorption of Anthocyanins. Journal of Agricultural and Food Chemistry, 2022, 70, 2501-2509.	5.2	11
4	Matrix-assisted laser desorption/ionization mass spectrometry-guided visualization analysis of intestinal absorption of acylated anthocyanins in Sprague-Dawley rats. Food Chemistry, 2021, 334, 127586.	8.2	17
5	Identification of peptides in blood following oral administration of \hat{l}^2 -conglycinin to Wistar rats. Food Chemistry, 2021, 341, 128197.	8.2	9
6	Methodologies for investigating the vasorelaxation action of peptides. , 2021, , 255-274.		1
7	Characteristics of electrospray-ionization detection of synthetic di- to penta-oligopeptides by amine derivatizations. Analytical Sciences, 2021, 37, 1629-1632.	1.6	O
8	Accumulation of Plasma-Derived Lipids in the Lipid Core and Necrotic Core of Human Atheroma: Imaging Mass Spectrometry and Histopathological Analyses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e498-e511.	2.4	9
9	Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle. Npj Science of Food, 2021, 5, 25.	5.5	6
10	In vitro and in silico characterization of adiponectin-receptor agonist dipeptides. Npj Science of Food, 2021, 5, 29.	5 . 5	8
11	Novel Approach for Simultaneous Analysis of Peptide Metabolites from Orally Administered Glycinin in Rat Bloodstream by Coumarin-Tagged MALDI–MS. Journal of Agricultural and Food Chemistry, 2021, 69, 14840-14848.	5.2	4
12	A trip of peptides to the brain. Food Production Processing and Nutrition, 2020, 2, .	3.5	7
13	Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid \hat{I}^2 peptide25-35-induced memory impairment in mice. Npj Science of Food, 2020, 4, 7.	5.5	24
14	Identification of characteristic compounds of moderate volatility in breast cancer cell lines. PLoS ONE, 2020, 15, e0235442.	2.5	4
15	Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging. Scientific Reports, 2019, 9, 3166.	3.3	20
16	Brain-transportable dipeptides across the blood-brain barrier in mice. Scientific Reports, 2019, 9, 5769.	3.3	44
17	Detection and Visualization of Food-derived Polyphenols by Matrix-assisted Laser Desorption/lonization Mass Spectrometry Imaging. Sensors and Materials, 2019, 31, 2333.	0.5	2
18	Soybean-Derived Glycine–Arginine Dipeptide Administration Promotes Neurotrophic Factor Expression in the Mouse Brain. Journal of Agricultural and Food Chemistry, 2018, 66, 7935-7941.	5.2	33

#	Article	IF	Citations
19	Effect of Aging on the Absorption of Small Peptides in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2017, 65, 5935-5943.	5.2	17
20	Analytical Evaluation of Bioactive Small Peptides on Their Intestinal Absorption and Bioavailability. Bunseki Kagaku, 2017, 66, 677-685.	0.2	0
21	Study on the Physiological Benefits of Food Compounds on Vascular Health and Their Underlying Mechanisms. Journal of the Japanese Society for Food Science and Technology, 2017, 64, 285-293.	0.1	0
22	The Dipeptides Ile-Tyr and Ser-Tyr Exert Distinct Effects on Catecholamine Metabolism in the Mouse Brainstem. International Journal of Peptides, 2016, 2016, 1-5.	0.7	10
23	An extract from pork bones containing osteocalcin improves glucose metabolism in mice by oral administration. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2176-2183.	1.3	12
24	Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity. Food Chemistry, 2016, 213, 329-335.	8.2	7
25	The photobase generator nifedipine as a novel matrix for the detection of polyphenols in matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 2016, 51, 938-946.	1.6	7
26	Paracellular Transport of Sulforaphane across Caco-2 Cell Monolayers. Food Science and Technology Research, 2016, 22, 127-134.	0.6	3
27	Adenine attenuates the Ca2+ contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 999-1007.	3.0	4
28	Ferulic acid enhances nitric oxide production through up-regulation of argininosuccinate synthase in inflammatory human endothelial cells. Life Sciences, 2016, 145, 224-232.	4.3	13
29	Structural Design of Oligopeptides for Intestinal Transport Model. Journal of Agricultural and Food Chemistry, 2016, 64, 2072-2079.	5.2	36
30	Quantitative mass spectrometric analysis of dipeptides in protein hydrolysate by a TNBS derivatization-aided standard addition method. Food Chemistry, 2016, 190, 345-350.	8.2	16
31	Visualization of Tocopherol Acetate Absorbed Inside Laminated Films by a Matrix-assisted Laser Desorption/Ionization-imaging Mass Spectrometry. Food Science and Technology Research, 2015, 21, 821-826.	0.6	3
32	Visualized absorption of antiâ€atherosclerotic dipeptide, Trpâ€His, in Sprague–Dawley rats by LCâ€MS and MALDlâ€MS imaging analyses. Molecular Nutrition and Food Research, 2015, 59, 1541-1549.	3.3	38
33	Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Bioscience, Biotechnology and Biochemistry, 2015, 79, 130-137.	1.3	92
34	Orally administrated dipeptide Ser-Tyr efficiently stimulates noradrenergic turnover in the mouse brain. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1542-1547.	1.3	16
35	Augmentation of ferulic acid-induced vasorelaxation with aging and its structure importance in thoracic aorta of spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1113-1117.	3.0	16
36	Attenuation of L-Type Ca2+ Channel Expression and Vasomotor Response in the Aorta with Age in Both Wistar-Kyoto and Spontaneously Hypertensive Rats. PLoS ONE, 2014, 9, e88975.	2.5	18

#	Article	IF	Citations
37	In Vitro and ex Vivo Uptake of Glutathione (GSH) across the Intestinal Epithelium and Fate of Oral GSH after in Vivo Supplementation. Journal of Agricultural and Food Chemistry, 2014, 62, 9499-9506.	5.2	46
38	Inhibition of calcium-calmodulin complex formation by vasorelaxant basic dipeptides demonstrated by in vitro and in silico analyses. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3073-3078.	2.4	12
39	Identification of peptides from soybean protein, glycinin, possessing suppression of intracellular Ca2+ concentration in vascular smooth muscle cells. Food Chemistry, 2014, 152, 218-224.	8.2	11
40	Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta. Journal of Nutritional Biochemistry, 2014, 25, 807-814.	4.2	31
41	Highly-Sensitive Detection of Free Advanced Glycation End-Products by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry with 2,4,6-Trinitrobenzene Sulfonate Derivatization. Analytical Chemistry, 2013, 85, 4289-4295.	6.5	32
42	Enhanced Visualization of Small Peptides Absorbed in Rat Small Intestine by Phytic-Acid-Aided Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Analytical Chemistry, 2013, 85, 10033-10039.	6.5	34
43	Improved Detection of Di-peptides by Liquid Chromatography-Tandem Mass Spectrometry with 2,4,6-Trinitrobenzene Sulfonate Conversion. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2094-2099.	1.3	13
44	Effect of the Uncharged Imidazolium Moiety in Adenine on Endothelium-Independent Relaxation in the Contracted Thoracic Aorta of Sprague-Dawley Rats. Bioscience, Biotechnology and Biochemistry, 2012, 76, 828-830.	1.3	6
45	The antiâ€atherosclerotic diâ€peptide, Trpâ€His, inhibits the phosphorylation of voltageâ€dependent Lâ€type Ca ²⁺ channels in rat vascular smooth muscle cells. FEBS Open Bio, 2012, 2, 83-88.	2.3	18
46	Epigallocatechin Gallate Promotes the Vasorelaxation Power of the Antiatherosclerotic Dipeptide Trp-His in Contracted Rat Aorta. Journal of Agricultural and Food Chemistry, 2012, 60, 9048-9054.	5.2	8
47	Vascular Regulation by Small Peptides. , 2011, , 201-221.		0
48	Application of 13C stable isotope labeling liquid chromatographyâ€"multiple reaction monitoringâ€"tandem mass spectrometry method for determining intact absorption of bioactive dipeptides in rats. Analytical Biochemistry, 2011, 414, 109-116.	2.4	40
49	Vasodilating dipeptide Trp-His can prevent atherosclerosis in apo E-deficient mice. British Journal of Nutrition, 2010, 103, 309-313.	2.3	49
50	Trp-His, a vasorelaxant di-peptide, can inhibit extracellular Ca2+ entry to rat vascular smooth muscle cells through blockade of dihydropyridine-like l-type Ca2+ channels. Peptides, 2010, 31, 2060-2066.	2.4	40
51	His-Arg-Trp potently attenuates contracted tension of thoracic aorta of Sprague-Dawley rats through the suppression of extracellular Ca2+ influx. Peptides, 2009, 30, 1502-1507.	2.4	26
52	Endothelium-dependent vasorelaxation effect of rutin-free tartary buckwheat extract in isolated rat thoracic aorta. Journal of Nutritional Biochemistry, 2008, 19, 700-707.	4.2	37
53	Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Sprague–Dawley rats. Life Sciences, 2008, 82, 869-875.	4.3	44
54	Vasodilating Effect of Di-Peptides in Thoracic Aortas from Spontaneously Hypertensive Rats. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2292-2295.	1.3	26

#	Article	IF	CITATIONS
55	Determination of Antihypertensive Small Peptides, Val-Tyr and Ile-Val-Tyr, by Fluorometric High-Performance Liquid Chromatography Combined with a Double Heart-Cut Column-Switching Technique. Analytical Sciences, 2005, 21, 997-1000.	1.6	13
56	Antiproliferative Action of an Angiotensin I-Converting Enzyme Inhibitory Peptide, Val-Tyr, via an L-Type Ca2+ Channel Inhibition in Cultured Vascular Smooth Muscle Cells. Hypertension Research, 2005, 28, 545-552.	2.7	41