
Mykola Borzenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prussian Blue Nanoparticle-Mediated Scalable Thermal Stimulation for In Vitro Neuronal Differentiation. Nanomaterials, 2022, 12, 2304.	4.1	2
2	Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. Beilstein Journal of Nanotechnology, 2020, 11, 1134-1146.	2.8	34
3	Multiphoton Fabrication of Proteinaceous Nanocomposite Microstructures with Photothermal Activity in the Infrared. Advanced Optical Materials, 2020, 8, 2000584.	7.3	9
4	Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks. Molecules, 2020, 25, 2499.	3.8	4
5	Self-Assembled Monolayers of Copper Sulfide Nanoparticles on Glass as Antibacterial Coatings. Nanomaterials, 2020, 10, 352.	4.1	24
6	Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. Nanomaterials, 2020, 10, 786.	4.1	10
7	Photothermally Active Inorganic Nanoparticles: from Colloidal Solutions to Photothermally Active Printed Surfaces and Polymeric Nanocomposite Materials. European Journal of Inorganic Chemistry, 2019, 2019, 4397-4404.	2.0	9
8	Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology, 2019, 30, 295702.	2.6	22
9	Photo-thermal and cytotoxic properties of inkjet-printed copper sulfide films on biocompatible latex coated substrates. Applied Surface Science, 2018, 435, 1087-1095.	6.1	11
10	Gold Nanoparticles for Tissue Engineering. Environmental Chemistry for A Sustainable World, 2018, , 343-390.	0.5	9
11	Photothermally Responsive Inks for Inkjetâ€Printing Secure Information. Particle and Particle Systems Characterization, 2018, 35, 1800095.	2.3	8
12	Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications. Beilstein Journal of Nanotechnology, 2018, 9, 2040-2048.	2.8	30
13	Self-assembled monolayers of Prussian blue nanoparticles with photothermal effect. Supramolecular Chemistry, 2017, 29, 823-833.	1.2	19
14	Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability. Beilstein Journal of Nanotechnology, 2016, 7, 1480-1485.	2.8	7
15	Fabrication of Inkjet-Printed Gold Nanostar Patterns with Photothermal Properties on Paper Substrate. ACS Applied Materials & Interfaces, 2016, 8, 9909-9916.	8.0	41
16	Photothermal effect of gold nanostars inkjet-printed on coated paper substrate under near-infrared irradiation. , 2016, , .		2
17	Gold Nanostars. SpringerBriefs in Materials, 2015, , .	0.3	26
18	Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. Langmuir, 2015, 31, 8081-8091.	3.5	84

Mykola Borzenkov

#	Article	IF	CITATIONS
19	Gold Nanostar Synthesis and Functionalization with Organic Molecules. SpringerBriefs in Materials, 2015, , 1-23.	0.3	2
20	Physical Properties of Gold Nanostars. SpringerBriefs in Materials, 2015, , 25-42.	0.3	5
21	Applications of Gold Nanostars: Nanosensing, Thermal Therapy, Delivery Systems. SpringerBriefs in Materials, 2015, , 43-59.	0.3	4
22	Interactions of Gold Nanostars with Cells. SpringerBriefs in Materials, 2015, , 61-74.	0.3	0
23	Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4â€Hydroxybutyric Acid and 6â€Hydroxyhexanoic Acid. Journal of Surfactants and Detergents, 2015, 18, 133-144.	2.1	11
24	Synthesis of Surface Active Monomers. SpringerBriefs in Materials, 2014, , 1-22.	0.3	0
25	Polymerization Behavior of Surface-Active Monomers. SpringerBriefs in Materials, 2014, , 39-55.	0.3	0
26	Surface Active Monomers. SpringerBriefs in Materials, 2014, , .	0.3	8
27	Synhtesis of Novel Surface Active Methacrylate Monomers Based on ε-Caprolactone. Chemistry and Chemical Technology, 2014, 8, 141-146.	1.1	1
28	Colloidal Properties of Surface Active Monomers. SpringerBriefs in Materials, 2014, , 23-37.	0.3	0
29	Application of Surface Active Monomers and Polymers Containing Links of Surface Active Monomers. SpringerBriefs in Materials, 2014, , 57-66.	0.3	0
30	Novel Peroxide Containing Maleinate Surfaceâ€Active Monomers for Obtaining Reactive Polymers. Macromolecular Symposia, 2012, 315, 60-65.	0.7	4
31	Obtaining of Functional Surface Active Monomers Based on tert-Butylperoxy-6-hydroxyhexanoate. Chemistry and Chemical Technology, 2011, 5, 363-366.	1.1	4