
Jeonghun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633965/publications.pdf Version: 2024-02-01

IFONCHUN KIM

#	Article	IF	CITATIONS
1	A recyclable indoor air filter system based on a photocatalytic metal–organic framework for the removal of harmful volatile organic compounds. Chemical Engineering Journal, 2022, 430, 132891.	12.7	21
2	Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. Environmental Research, 2022, 205, 112417.	7.5	30
3	Material Nanoarchitectonics of Functional Polymers and Inorganic Nanomaterials for Smart Supercapacitors. Small, 2022, 18, e2102397.	10.0	22
4	Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study. Cellulose, 2022, 29, 817-833.	4.9	14
5	Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules, 2022, 27, 2025.	3.8	29
6	Recent progress of functional metal–organic framework materials for water treatment using sulfate radicals. Environmental Research, 2022, 211, 112956.	7.5	25
7	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie - International Edition, 2021, 60, 9660-9665.	13.8	15
8	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie, 2021, 133, 9746-9751.	2.0	4
9	Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. Journal of Hazardous Materials, 2021, 405, 124248.	12.4	36
10	ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale, 2021, 13, 11086-11092.	5.6	16
11	Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors. Nanomaterials, 2021, 11, 395.	4.1	22
12	Mesoporous Rh nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. Journal of Industrial and Engineering Chemistry, 2021, 96, 371-375.	5.8	15
13	Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. Journal of Hazardous Materials, 2021, 414, 125160.	12.4	48
14	Association of Dipeptidyl Peptidase-4 Inhibitor Use and Amyloid Burden in Patients With Diabetes and AD-Related Cognitive Impairment. Neurology, 2021, 97, e1110-e1122.	1.1	18
15	KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Applied Materials & Interfaces, 2021, 13, 52034-52043.	8.0	149
16	Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chemical Engineering Journal, 2021, 419, 129445.	12.7	69
17	Plasmonic nanoparticle-analyte nanoarchitectronics combined with efficient analyte deposition method on regenerated cellulose-based SERS platform. Cellulose, 2021, 28, 11493-11502.	4.9	25
18	Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chemical Engineering Journal, 2020, 382, 122996.	12.7	84

#	Article	IF	CITATIONS
19	New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. CheM, 2020, 6, 19-40.	11.7	511
20	Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance. Energy Storage Materials, 2020, 25, 313-323.	18.0	26
21	Designed Patterning of Mesoporous Metal Films Based on Electrochemical Micelle Assembly Combined with Lithographical Techniques. Small, 2020, 16, e1902934.	10.0	26
22	Fabrication of Flexible Microsupercapacitors with Binder-Free ZIF-8 Derived Carbon Films <i>via</i> Electrophoretic Deposition. Bulletin of the Chemical Society of Japan, 2020, 93, 176-181.	3.2	93
23	Optimizing Electron Densities of Niâ€N Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	6.8	76
24	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie, 2020, 132, 2082-2086.	2.0	70
25	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie - International Edition, 2020, 59, 2066-2070.	13.8	191
26	Synthesis of Uniformly Sized Mesoporous Silver Films and Their SERS Application. Journal of Physical Chemistry C, 2020, 124, 23730-23737.	3.1	47
27	Photodegradation Activity of Poly(ethylene oxide-b- <i>ε</i> -caprolactone)-Templated Mesoporous TiO ₂ Coated with Au and Pt. Journal of Nanoscience and Nanotechnology, 2020, 20, 5276-5281.	0.9	4
28	Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property. ACS Applied Materials & Interfaces, 2020, 12, 34065-34073.	8.0	101
29	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	10.1	48
30	Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application. Polymers, 2020, 12, 1666.	4.5	15
31	Impact of Micropores and Dopants to Mitigate Lithium Polysulfides Shuttle over High Surface Area of ZIF-8 Derived Nanoporous Carbons. ACS Applied Energy Materials, 2020, 3, 5523-5532.	5.1	21
32	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2020, 8, 14966-14974.	10.3	19
33	Facile fabrication of CuxSy/Carbon composites using lignosulfonate for efficient palladium recovery under strong acidic conditions. Journal of Hazardous Materials, 2020, 391, 122253.	12.4	15
34	Delithiated Fe1-xMgxPO4 cathode materials: Structural, magnetic, and Mössbauer studies. AIP Advances, 2020, 10, 015214.	1.3	1
35	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	5.6	32
36	Electrochemical preparation system for unique mesoporous hemisphere gold nanoparticles using block copolymer micelles. RSC Advances, 2020, 10, 8309-8313.	3.6	17

#	Article	IF	CITATIONS
37	A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly. Journal of Materials Chemistry A, 2020, 8, 21016-21025.	10.3	35
38	Magnetic properties of polycrystalline Y-type hexaferrite Ba2-xSrxNi2(Fe1-yAly)12O22 using Mössbauer spectroscopy. AIP Advances, 2020, 10, .	1.3	5
39	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	4.4	47
40	Coating of Pt-Loaded Mesoporous Silica Layers on Ceramics Scaffolds for Practical Preservation System for Greengrocery. ACS Applied Materials & amp; Interfaces, 2019, 11, 32084-32089.	8.0	9
41	Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide?. Journal of Materials Chemistry B, 2019, 7, 5412-5422.	5.8	72
42	Synthesis of Mesoporous TiO2-B Nanobelts with Highly Crystalized Walls toward Efficient H2 Evolution. Nanomaterials, 2019, 9, 919.	4.1	10
43	Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods, 2019, 3, 1900213.	8.6	76
44	Single Crystal Growth of Two-Dimensional Cyano-Bridged Coordination Polymer of Co(H2O)2Ni(CN)4·4H2O Using Trisodium Citrate Dihydrate. Bulletin of the Chemical Society of Japan, 2019, 92, 1263-1267.	3.2	10
45	Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes. Advanced Science, 2019, 6, 1900431.	11.2	95
46	Advanced Nanoporous Material–Based QCM Devices: A New Horizon of Interfacial Mass Sensing Technology. Advanced Materials Interfaces, 2019, 6, 1900849.	3.7	69
47	Lyotropic Liquid Crystalline Mesophases Made of Saltâ€Acidâ€6urfactant Systems for the Synthesis of Novel Mesoporous Lithium Metal Phosphates. ChemPlusChem, 2019, 84, 1544-1553.	2.8	6
48	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	10.3	9
49	Excess Heat Production by the Pair Annihilation of Ionic Vacancies in Copper Redox Reactions. Scientific Reports, 2019, 9, 13695.	3.3	8
50	Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe ₂ O ₄ thin films. Nanoscale Horizons, 2019, 4, 434-444.	8.0	77
51	Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1380-1393.	10.3	159
52	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	30.8	125
53	Tailored synthesis of Zn–N co-doped porous MoC nanosheets towards efficient hydrogen evolution. Nanoscale, 2019, 11, 1700-1709.	5.6	39
54	Efficient oxygen evolution on mesoporous IrO _x nanosheets. Catalysis Science and Technology, 2019, 9, 3697-3702.	4.1	51

#	Article	IF	CITATIONS
55	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	8.6	31
56	Gold nanoparticles anchored on mesoporous zirconia thin films for efficient catalytic oxidation of carbon monoxide at low temperatures. Microporous and Mesoporous Materials, 2019, 288, 109530.	4.4	9
57	Ultra-thin, highly graphitized carbon nanosheets into three-dimensional interconnected framework utilizing a ball mill mixing of precursors. Chemical Engineering Journal, 2019, 374, 1214-1220.	12.7	18
58	Core-shell structured metal-organic framework-derived carbon with redox-active polydopamine nanothin film. Materials Letters, 2019, 253, 178-182.	2.6	12
59	Electrochemical supermolecular templating of mesoporous Rh films. Nanoscale, 2019, 11, 10581-10588.	5.6	19
60	Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. Journal of Materials Chemistry A, 2019, 7, 13743-13750.	10.3	112
61	Water Purification: Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification (Small 16/2019). Small, 2019, 15, 1970085.	10.0	10
62	Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. Bulletin of the Chemical Society of Japan, 2019, 92, 875-904.	3.2	252
63	Fabrication of Highly Conductive Porous Cellulose/PEDOT:PSS Nanocomposite Paper via Post-Treatment. Nanomaterials, 2019, 9, 612.	4.1	33
64	Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Materials Horizons, 2019, 6, 1433-1437.	12.2	241
65	Adsorption and Oxidative Desorption of Acetaldehyde over Mesoporous Fe <i>_x</i> O <i>_y</i> H <i>_z</i> /Al ₂ O ₃ . ACS Omega, 2019, 4, 5382-5391.	3.5	20
66	Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification. Small, 2019, 15, e1900744.	10.0	170
67	A Review on Iron Oxideâ€Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods, 2019, 3, 1800512.	8.6	78
68	Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chemical Science, 2019, 10, 4054-4061.	7.4	175
69	Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides. Cellulose, 2019, 26, 4935-4944.	4.9	92
70	A Facile Synthesis of Hematite Nanorods from Rice Starch and Their Application to Pb(II) Ions Removal. ChemistrySelect, 2019, 4, 3730-3736.	1.5	10
71	Fabrication of Nanoporous Carbon Materials with Hard- and Soft-Templating Approaches: A Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3673-3685.	0.9	64
72	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998

#	Article	IF	CITATIONS
73	Chemical Design of Palladiumâ€Based Nanoarchitectures for Catalytic Applications. Small, 2019, 15, e1804378.	10.0	90
74	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	21.0	370
75	Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Applied Materials & Interfaces, 2019, 11, 9343-9354.	8.0	178
76	Metal–Organic Framework (MOF)â€Đerived Nanoporous Carbon Materials. Chemistry - an Asian Journal, 2019, 14, 1331-1343.	3.3	123
77	Enhancement of thermoelectric properties of La-doped SrTiO ₃ bulk by introducing nanoscale porosity. Royal Society Open Science, 2019, 6, 190870.	2.4	24
78	Gram-Scale Synthesis of Bimetallic ZIFs and Their Thermal Conversion to Nanoporous Carbon Materials. Nanomaterials, 2019, 9, 1796.	4.1	13
79	Development of Sulfonicâ€Acidâ€Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 2019, 25, 1614-1635.	3.3	139
80	Structurally controlled layered Ni3C/graphene hybrids using cyano-bridged coordination polymers. Electrochemistry Communications, 2019, 100, 74-80.	4.7	16
81	A facile surfactant-assisted synthesis of carbon-supported dendritic Pt nanoparticles with high electrocatalytic performance for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 280, 1-6.	4.4	20
82	Antibacterial poly (3,4-ethylenedioxythiophene):poly(styrene-sulfonate)/agarose nanocomposite hydrogels with thermo-processability and self-healing. Carbohydrate Polymers, 2019, 203, 26-34.	10.2	57
83	Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chemistry of Materials, 2018, 30, 3379-3386.	6.7	264
84	Threeâ€Ðimensional Macroporous Graphitic Carbon for Supercapacitor Application. ChemistrySelect, 2018, 3, 4522-4526.	1.5	15
85	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	3.3	68
86	One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications. ACS Applied Energy Materials, 2018, 1, 2007-2015.	5.1	159
87	Facile Synthesis of Palladiumâ€Nanoparticleâ€Embedded Nâ€Doped Carbon Fibers for Electrochemical Sensing. ChemPlusChem, 2018, 83, 401-406.	2.8	8
88	Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sensors and Actuators B: Chemical, 2018, 255, 2800-2808.	7.8	63
89	Evaluation of residual stress and texture in isotope based Mg ¹¹ B ₂ superconductor using neutron diffraction. RSC Advances, 2018, 8, 39455-39462.	3.6	3
90	Standing Mesochannels: Mesoporous PdCu Films with Vertically Aligned Mesochannels from Nonionic Micellar Solutions. ACS Applied Materials & Interfaces, 2018, 10, 40623-40630.	8.0	25

#	Article	IF	CITATIONS
91	Investigation of Spin Reorientation in Ga Substituted Y-type Hexaferrite based on Mössbauer Spectroscopy. Journal of the Korean Physical Society, 2018, 73, 1708-1711.	0.7	1
92	Cyano-Bridged Cu-Ni Coordination Polymer Nanoflakes and Their Thermal Conversion to Mixed Cu-Ni Oxides. Nanomaterials, 2018, 8, 968.	4.1	4
93	Phosphorus-Based Mesoporous Materials for Energy Storage and Conversion. Joule, 2018, 2, 2289-2306.	24.0	65
94	Synthesis of CdS/ZnO Hybrid Nanoarchitectured Films with Visible Photocatalytic Activity. Bulletin of the Chemical Society of Japan, 2018, 91, 1556-1560.	3.2	15
95	Nanoarchitectured Grapheneâ€Organic Frameworks (GOFs): Synthetic Strategies, Properties, and Applications. Chemistry - an Asian Journal, 2018, 13, 3561-3574.	3.3	56
96	Trimetallic Mesoporous AuCuNi Electrocatalysts with Controlled Compositions Using Block Copolymer Micelles as Templates. Small Methods, 2018, 2, 1800283.	8.6	18
97	Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science, 2018, 5, 1801116.	11.2	162
98	Micelle-Assisted Strategy for the Direct Synthesis of Large-Sized Mesoporous Platinum Catalysts by Vapor Infiltration of a Reducing Agent. Nanomaterials, 2018, 8, 841.	4.1	3
99	Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO ₂ uptake and energy storage. Journal of Materials Chemistry A, 2018, 6, 19532-19541.	10.3	184
100	Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications. ChemSusChem, 2018, 11, 3546-3558.	6.8	90
101	Efficient H ₂ Generation Using Thiourea-based Periodic Mesoporous Organosilica with Pd Nanoparticles. Chemistry Letters, 2018, 47, 1243-1245.	1.3	27
102	Mesoporous Manganese Phosphonate Nanorods as a Prospective Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19739-19745.	8.0	38
103	Soft-templated synthesis of mesoporous nickel oxide using poly(styrene-block-acrylic) Tj ETQq1 1 0.784314 rgBT	/Overlock 4.4	10 Tf 50 26
104	High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale, 2018, 10, 14852-14859.	5.6	97
105	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	8.6	166
106	Templateâ€Free Fabrication of Mesoporous Alumina Nanospheres Using Postâ€Synthesis Waterâ€Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. Small, 2018, 14, e1800474.	10.0	50
107	Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Interfaces, 2018, 10, 23783-23791.	8.0	27
108	Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 24963-24968.	8.0	45

#	Article	IF	CITATIONS
109	Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Accounts of Chemical Research, 2018, 51, 1764-1773.	15.6	277
110	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	19.5	88
111	Synthesis of nanoporous calcium carbonate spheres using double hydrophilic block copolymer poly(acrylic acid-b-N-isopropylacrylamide). Materials Letters, 2018, 230, 143-147.	2.6	11
112	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	11.9	285
113	Subâ€50 nm Iron–Nitrogenâ€Ðoped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	11.2	187
114	Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles. Chemical Communications, 2018, 54, 10347-10350.	4.1	20
115	Mesoporous Metallic Iridium Nanosheets. Journal of the American Chemical Society, 2018, 140, 12434-12441.	13.7	345
116	Synthesis and Characterization of Dendritic Pt Nanoparticles by Using Cationic Surfactant. Bulletin of the Chemical Society of Japan, 2018, 91, 1333-1336.	3.2	15
117	A Glucose-Assisted Hydrothermal Reaction for Directly Transforming Metal–Organic Frameworks into Hollow Carbonaceous Materials. Chemistry of Materials, 2018, 30, 4401-4408.	6.7	102
118	Mössbauer Studies of BaCoZnFe ₁₆ O ₂₇ W-type Hexaferrite. Journal of Magnetics, 2018, 23, 644-647.	0.4	1
119	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chemical Science, 2017, 8, 3538-3546.	7.4	329
120	3D network of cellulose-based energy storage devices and related emerging applications. Materials Horizons, 2017, 4, 522-545.	12.2	261
121	Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Materials, 2017, 5, .	5.1	59
122	Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEKâ€⊋93 Cells. Chemistry - an Asian Journal, 2017, 12, 21-26.	3.3	25
123	A Simple Silver Nanowire Patterning Method Based on Poly(Ethylene Glycol) Photolithography and Its Application for Soft Electronics. Scientific Reports, 2017, 7, 2282.	3.3	55
124	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	10.3	146
125	A Threeâ€Dimensionally Structured Electrocatalyst: Cobaltâ€Embedded Nitrogenâ€Doped Carbon Nanotubes/Nitrogenâ€Doped Reduced Graphene Oxide Hybrid for Efficient Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 637-643.	3.3	50
126	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	24.0	400

#	Article	IF	CITATIONS
127	Superior Electrocatalytic Activity of a Robust Carbonâ€Felt Electrode with Oxygenâ€Rich Phosphate Groups for Allâ€Vanadium Redox Flow Batteries. ChemSusChem, 2016, 9, 1329-1338.	6.8	95
128	Photothermal ablation of cancer cells using self-doped polyaniline nanoparticles. Nanotechnology, 2016, 27, 185104.	2.6	26
129	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	10.3	32
130	All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 2016, 4, 7983-7999.	10.3	245
131	CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. Chemical Communications, 2016, 52, 13016-13019.	4.1	109
132	Si/SiO _{<i>x</i>} â€Conductive Polymer Coreâ€6hell Nanospheres with an Improved Conducting Path Preservation for Lithiumâ€lon Battery. ChemSusChem, 2016, 9, 2754-2758.	6.8	42
133	Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 2016, 3, 517-535.	12.2	272
134	Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. Journal of Materials Chemistry A, 2016, 4, 14050-14068.	10.3	155
135	Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806.	15.6	670
136	A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes. ACS Applied Materials & Interfaces, 2016, 8, 33175-33182.	8.0	40
137	Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction. Chemistry - A European Journal, 2016, 22, 18259-18264.	3.3	43
138	Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chemical Science, 2016, 7, 5704-5713.	7.4	236
139	The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors. Chemical Science, 2016, 7, 1791-1796.	7.4	45
140	A Single‧tep Synthesis of Electroactive Mesoporous ProDOT‧ilica Structures. Angewandte Chemie - International Edition, 2015, 54, 8407-8410.	13.8	22
141	A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms. Journal of Materials Chemistry C, 2015, 3, 5859-5868.	5.5	76
142	Selfâ€Doped Conjugated Polymeric Nanoassembly by Simplified Process for Optical Cancer Theragnosis. Advanced Functional Materials, 2015, 25, 2260-2269.	14.9	20
143	Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. Journal of Materials Chemistry A, 2015, 3, 6526-6533.	10.3	147
144	Shape-controlled synthesis of mesoporous iron phosphate materials with crystallized frameworks. Chemical Communications, 2015, 51, 13806-13809.	4.1	20

#	Article	IF	CITATIONS
145	Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Physical Chemistry Chemical Physics, 2015, 17, 30963-30977.	2.8	142
146	Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014, 7, 717-730.	10.4	383
147	Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness. Journal of Materials Chemistry C, 2014, 2, 5636-5643.	5.5	105
148	Highly Fluorescent Conjugated Polyelectrolyte for Protein Sensing and Cell-Compatible Chemosensing Applications. ACS Applied Materials & Interfaces, 2014, 6, 3305-3311.	8.0	18
149	TiO2nanoparticulate-wire hybrids for highly efficient solid-state dye-sensitized solar cells using SSP-PEDOTs. RSC Advances, 2014, 4, 44555-44562.	3.6	17
150	Noninvasive Photodetachment of Stem Cells on Tunable Conductive Polymer Nano Thin Films: Selective Harvesting and Preserved Differentiation Capacity. ACS Nano, 2013, 7, 4119-4128.	14.6	58
151	Waterborne Polyacrylic/PEDOT Nanocomposites for Conductive Transparent Adhesives. Journal of Nanoscience and Nanotechnology, 2013, 13, 7631-7636.	0.9	4
152	Self-fabricated dextran-coated gold nanoparticles using pyrenyl dextran as a reducible stabilizer and their application as CT imaging agents for atherosclerosis. Journal of Materials Chemistry, 2012, 22, 17518.	6.7	25
153	Room Temperature Solidâ€&tate Synthesis of a Conductive Polymer for Applications in Stable I ₂ â€Free Dyeâ€&ensitized Solar Cells. ChemSusChem, 2012, 5, 2173-2180.	6.8	18
154	Highly Fluorescent Conjugated Polyelectrolyte Nanostructures: Synthesis, Selfâ€Assembly, and Al ³⁺ Ion Sensing. Advanced Functional Materials, 2012, 22, 1417-1424.	14.9	34
155	Catalytic Polymerization of Anthracene in a Recyclable SBAâ€15 Reactor with High Iron Content by a Friedel–Crafts Alkylation. Angewandte Chemie - International Edition, 2012, 51, 2859-2863.	13.8	15
156	Inside Cover: Catalytic Polymerization of Anthracene in a Recyclable SBA-15 Reactor with High Iron Content by a Friedel-Crafts Alkylation (Angew. Chem. Int. Ed. 12/2012). Angewandte Chemie - International Edition, 2012, 51, 2786-2786.	13.8	0
157	Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 6864-6869.	13.8	84
158	Visible to Near-IR Electrochromism and Photothermal Effect of Poly(3,4-propylenedioxyselenophene)s. Macromolecules, 2011, 44, 8791-8797.	4.8	57
159	Preparation of Conductive Transparent Adhesive Films from Carbon Nanomaterials and Polar Acrylate. Journal of Nanoscience and Nanotechnology, 2011, 11, 6306-6311.	0.9	0
160	Enhanced Performance of I ₂ â€Free Solidâ€State Dyeâ€Sensitized Solar Cells with Conductive Polymer up to 6.8%. Advanced Functional Materials, 2011, 21, 4633-4639.	14.9	76
161	Solar Cells: Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive Polymer up to 6.8% (Adv. Funct. Mater. 24/2011). Advanced Functional Materials, 2011, 21, 4698-4698.	14.9	1
162	Highly Efficient, Iodineâ€Free Dyeâ€Sensitized Solar Cells with Solidâ€State Synthesis of Conducting Polymers. Advanced Materials, 2011, 23, 1641-1646.	21.0	183

Jeonghun Kim

#	Article	IF	CITATIONS
163	Solution Processable and Patternable Poly(3,4â€alkylenedioxythiophene)s for Largeâ€Area Electrochromic Films. Advanced Materials, 2011, 23, 4168-4173.	21.0	97
164	Highly Ordered Poly(thiophene)s Prepared in Mesoporous Silica Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 4567-4572.	0.9	1
165	Electrochemical Modulation of Color and Fluorescence in One Cell Using Conducting Polymers. Molecular Crystals and Liquid Crystals, 2011, 538, 39-44.	0.9	10
166	Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. Chemistry of Materials, 2010, 22, 4426-4434.	6.7	43
167	Preparation and Holographic Recording of Fluorescent Photopolymer Films Containing Anthracene Polymer for Security. Journal of the Optical Society of Korea, 2010, 14, 305-309.	0.6	2
168	Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT. Macromolecules, 2010, 43, 2322-2327.	4.8	74
169	A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics, 2010, 49, 01AE10.	1.5	26
170	Electrochromic pattern formation by photo cross-linking reaction of PEDOT side chains. Macromolecular Research, 2009, 17, 791-796.	2.4	19
171	Photochromic fluorescence switching from diarylethenes and its applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 111-129.	11.6	289
172	A dual-functional monomer having an epoxy and methacrylate group for holographic recording. Journal of Materials Chemistry, 2008, 18, 4762.	6.7	9
173	Holographic Recording on Photopolymers Containing Pyrene for Enhanced Fluorescence Intensity. Macromolecules, 2008, 41, 7160-7165.	4.8	14
174	Fluorescent Photopolymer for Holographic Patterning. Molecular Crystals and Liquid Crystals, 2008, 491, 67-73.	0.9	4
175	Fluorescent Grating Patterns of Photopolymer Film Containing Ethylene Glycol Phenyl Ether Acrylate. Journal of Nanoscience and Nanotechnology, 2008, 8, 4616-4620.	0.9	5
176	3D Image Recording on Photopolymer Films Containing Molecular Composites of a New s-Triazine Monomer and Acrylate Monomer by Dual Photopolymerization. Journal of Nanoscience and Nanotechnology, 2008, 8, 4702-4706.	0.9	3
177	Holographic security media prepared from photochromic fluorescent films. Proceedings of SPIE, 2008, , .	0.8	2
178	Photopolymers containing epoxy monomers for holographic recording. , 2007, 6488, 32.		1
179	The photopolymer containing dual functional monomers for holographic recording. , 2007, , .		Ο