Jeonghun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633965/publications.pdf

Version: 2024-02-01

		17440	20358
179	14,703	63	116
papers	citations	h-index	g-index
189	189	189	17137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998
2	Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806.	15.6	670
3	New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. CheM, 2020, 6, 19-40.	11.7	511
4	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	24.0	400
5	Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014, 7, 717-730.	10.4	383
6	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	21.0	370
7	Mesoporous Metallic Iridium Nanosheets. Journal of the American Chemical Society, 2018, 140, 12434-12441.	13.7	345
8	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chemical Science, 2017, 8, 3538-3546.	7.4	329
9	Photochromic fluorescence switching from diarylethenes and its applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 111-129.	11.6	289
10	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	11.9	285
11	Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Accounts of Chemical Research, 2018, 51, 1764-1773.	15.6	277
12	Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 2016, 3, 517-535.	12.2	272
13	Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chemistry of Materials, 2018, 30, 3379-3386.	6.7	264
14	3D network of cellulose-based energy storage devices and related emerging applications. Materials Horizons, 2017, 4, 522-545.	12.2	261
15	Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. Bulletin of the Chemical Society of Japan, 2019, 92, 875-904.	3.2	252
16	All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 2016, 4, 7983-7999.	10.3	245
17	Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Materials Horizons, 2019, 6, 1433-1437.	12.2	241
18	Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chemical Science, 2016, 7, 5704-5713.	7.4	236

#	Article	IF	Citations
19	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie - International Edition, 2020, 59, 2066-2070.	13.8	191
20	Subâ€50 nm Iron–Nitrogenâ€Doped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	11.2	187
21	Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO ₂ uptake and energy storage. Journal of Materials Chemistry A, 2018, 6, 19532-19541.	10.3	184
22	Highly Efficient, Iodineâ€Free Dyeâ€Sensitized Solar Cells with Solidâ€State Synthesis of Conducting Polymers. Advanced Materials, 2011, 23, 1641-1646.	21.0	183
23	Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9343-9354.	8.0	178
24	Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chemical Science, 2019, 10, 4054-4061.	7.4	175
25	Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification. Small, 2019, 15, e1900744.	10.0	170
26	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	8.6	166
27	Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science, 2018, 5, 1801116.	11.2	162
28	One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications. ACS Applied Energy Materials, 2018, 1, 2007-2015.	5.1	159
29	Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1380-1393.	10.3	159
30	Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. Journal of Materials Chemistry A, 2016, 4, 14050-14068.	10.3	155
31	KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52034-52043.	8.0	149
32	Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. Journal of Materials Chemistry A, 2015, 3, 6526-6533.	10.3	147
33	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	10.3	146
34	Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Physical Chemistry Chemical Physics, 2015, 17, 30963-30977.	2.8	142
35	Development of Sulfonicâ€Acidâ€Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 2019, 25, 1614-1635.	3.3	139
36	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	30.8	125

#	Article	IF	CITATIONS
37	Metal–Organic Framework (MOF)â€Derived Nanoporous Carbon Materials. Chemistry - an Asian Journal, 2019, 14, 1331-1343.	3.3	123
38	Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. Journal of Materials Chemistry A, 2019, 7, 13743-13750.	10.3	112
39	CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. Chemical Communications, 2016, 52, 13016-13019.	4.1	109
40	Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness. Journal of Materials Chemistry C, 2014, 2, 5636-5643.	5.5	105
41	A Glucose-Assisted Hydrothermal Reaction for Directly Transforming Metal–Organic Frameworks into Hollow Carbonaceous Materials. Chemistry of Materials, 2018, 30, 4401-4408.	6.7	102
42	Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34065-34073.	8.0	101
43	Solution Processable and Patternable Poly(3,4â€alkylenedioxythiophene)s for Largeâ€Area Electrochromic Films. Advanced Materials, 2011, 23, 4168-4173.	21.0	97
44	High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale, 2018, 10, 14852-14859.	5.6	97
45	Superior Electrocatalytic Activity of a Robust Carbonâ€Felt Electrode with Oxygenâ€Rich Phosphate Groups for Allâ€Vanadium Redox Flow Batteries. ChemSusChem, 2016, 9, 1329-1338.	6.8	95
46	Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes. Advanced Science, 2019, 6, 1900431.	11.2	95
47	Fabrication of Flexible Microsupercapacitors with Binder-Free ZIF-8 Derived Carbon Films <i>via</i> Electrophoretic Deposition. Bulletin of the Chemical Society of Japan, 2020, 93, 176-181.	3.2	93
48	Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides. Cellulose, 2019, 26, 4935-4944.	4.9	92
49	Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications. ChemSusChem, 2018, 11, 3546-3558.	6.8	90
50	Chemical Design of Palladiumâ€Based Nanoarchitectures for Catalytic Applications. Small, 2019, 15, e1804378.	10.0	90
51	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	19.5	88
52	Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 6864-6869.	13.8	84
53	Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chemical Engineering Journal, 2020, 382, 122996.	12.7	84
54	A Review on Iron Oxideâ€Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods, 2019, 3, 1800512.	8.6	78

#	Article	IF	CITATIONS
55	Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe ₂ O ₄ thin films. Nanoscale Horizons, 2019, 4, 434-444.	8.0	77
56	Enhanced Performance of I ₂ â€Free Solidâ€State Dyeâ€Sensitized Solar Cells with Conductive Polymer up to 6.8%. Advanced Functional Materials, 2011, 21, 4633-4639.	14.9	76
57	A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms. Journal of Materials Chemistry C, 2015, 3, 5859-5868.	5 . 5	76
58	Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods, 2019, 3, 1900213.	8.6	76
59	Optimizing Electron Densities of Niâ€N Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	6.8	76
60	Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT. Macromolecules, 2010, 43, 2322-2327.	4.8	74
61	Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline \hat{l}_{\pm} - or \hat{l}^{3} -iron oxide?. Journal of Materials Chemistry B, 2019, 7, 5412-5422.	5.8	72
62	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie, 2020, 132, 2082-2086.	2.0	70
63	Advanced Nanoporous Material–Based QCM Devices: A New Horizon of Interfacial Mass Sensing Technology. Advanced Materials Interfaces, 2019, 6, 1900849.	3.7	69
64	Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chemical Engineering Journal, 2021, 419, 129445.	12.7	69
65	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	3.3	68
66	Phosphorus-Based Mesoporous Materials for Energy Storage and Conversion. Joule, 2018, 2, 2289-2306.	24.0	65
67	Fabrication of Nanoporous Carbon Materials with Hard- and Soft-Templating Approaches: A Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3673-3685.	0.9	64
68	Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sensors and Actuators B: Chemical, 2018, 255, 2800-2808.	7.8	63
69	Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Materials, 2017, 5, .	5.1	59
70	Noninvasive Photodetachment of Stem Cells on Tunable Conductive Polymer Nano Thin Films: Selective Harvesting and Preserved Differentiation Capacity. ACS Nano, 2013, 7, 4119-4128.	14.6	58
71	Visible to Near-IR Electrochromism and Photothermal Effect of Poly(3,4-propylenedioxyselenophene)s. Macromolecules, 2011, 44, 8791-8797.	4.8	57
72	Antibacterial poly (3,4-ethylenedioxythiophene):poly(styrene-sulfonate)/agarose nanocomposite hydrogels with thermo-processability and self-healing. Carbohydrate Polymers, 2019, 203, 26-34.	10.2	57

#	Article	IF	Citations
73	Nanoarchitectured Grapheneâ€Organic Frameworks (GOFs): Synthetic Strategies, Properties, and Applications. Chemistry - an Asian Journal, 2018, 13, 3561-3574.	3.3	56
74	A Simple Silver Nanowire Patterning Method Based on Poly(Ethylene Glycol) Photolithography and Its Application for Soft Electronics. Scientific Reports, 2017, 7, 2282.	3.3	55
75	Efficient oxygen evolution on mesoporous IrO _x nanosheets. Catalysis Science and Technology, 2019, 9, 3697-3702.	4.1	51
76	A Threeâ€Dimensionally Structured Electrocatalyst: Cobaltâ€Embedded Nitrogenâ€Doped Carbon Nanotubes/Nitrogenâ€Doped Reduced Graphene Oxide Hybrid for Efficient Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 637-643.	3.3	50
77	Templateâ€Free Fabrication of Mesoporous Alumina Nanospheres Using Postâ€Synthesis Waterâ€Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. Small, 2018, 14, e1800474.	10.0	50
78	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	10.1	48
79	Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. Journal of Hazardous Materials, 2021, 414, 125160.	12.4	48
80	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	4.4	47
81	Synthesis of Uniformly Sized Mesoporous Silver Films and Their SERS Application. Journal of Physical Chemistry C, 2020, 124, 23730-23737.	3.1	47
82	The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors. Chemical Science, 2016, 7, 1791-1796.	7.4	45
83	Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts. ACS Applied Materials & Diversaces, 2018, 10, 24963-24968.	8.0	45
84	Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. Chemistry of Materials, 2010, 22, 4426-4434.	6.7	43
85	Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction. Chemistry - A European Journal, 2016, 22, 18259-18264.	3.3	43
86	Si/SiO _{<i>x</i>} â€Conductive Polymer Coreâ€Shell Nanospheres with an Improved Conducting Path Preservation for Lithiumâ€Ion Battery. ChemSusChem, 2016, 9, 2754-2758.	6.8	42
87	A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33175-33182.	8.0	40
88	Tailored synthesis of Zn–N co-doped porous MoC nanosheets towards efficient hydrogen evolution. Nanoscale, 2019, 11, 1700-1709.	5. 6	39
89	Mesoporous Manganese Phosphonate Nanorods as a Prospective Anode for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19739-19745.	8.0	38
90	Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. Journal of Hazardous Materials, 2021, 405, 124248.	12.4	36

#	Article	IF	Citations
91	A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly. Journal of Materials Chemistry A, 2020, 8, 21016-21025.	10.3	35
92	Highly Fluorescent Conjugated Polyelectrolyte Nanostructures: Synthesis, Selfâ€Assembly, and Al ³⁺ Ion Sensing. Advanced Functional Materials, 2012, 22, 1417-1424.	14.9	34
93	Fabrication of Highly Conductive Porous Cellulose/PEDOT:PSS Nanocomposite Paper via Post-Treatment. Nanomaterials, 2019, 9, 612.	4.1	33
94	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	10.3	32
95	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	5.6	32
96	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	8.6	31
97	Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. Environmental Research, 2022, 205, 112417.	7.5	30
98	Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules, 2022, 27, 2025.	3.8	29
99	Efficient H ₂ Generation Using Thiourea-based Periodic Mesoporous Organosilica with Pd Nanoparticles. Chemistry Letters, 2018, 47, 1243-1245.	1.3	27
100	Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au–Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au—Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au—Cu Alloy Films with Vertically Oriented Mesochannels Using Block Copolymer Micelles. ACS Applied Materials & Electrochemical Synthesis of Mesoporous Au—Cu Alloy Films With Vertical Synthesis of Mesoporous Au—Cu Alloy Films With Vertical Synthesis of Mesoporous Au†"Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Au†"Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy Films With Vertical Synthesis of Mesoporous Auâ§ "Cu Alloy Films" Alloy F	8.0	27
101	A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics, 2010, 49, 01AE10.	1.5	26
102	Photothermal ablation of cancer cells using self-doped polyaniline nanoparticles. Nanotechnology, 2016, 27, 185104.	2.6	26
103	Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance. Energy Storage Materials, 2020, 25, 313-323.	18.0	26
104	Designed Patterning of Mesoporous Metal Films Based on Electrochemical Micelle Assembly Combined with Lithographical Techniques. Small, 2020, 16, e1902934.	10.0	26
105	Self-fabricated dextran-coated gold nanoparticles using pyrenyl dextran as a reducible stabilizer and their application as CT imaging agents for atherosclerosis. Journal of Materials Chemistry, 2012, 22, 17518.	6.7	25
106	Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEKâ€293 Cells. Chemistry - an Asian Journal, 2017, 12, 21-26.	3.3	25
107	Standing Mesochannels: Mesoporous PdCu Films with Vertically Aligned Mesochannels from Nonionic Micellar Solutions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40623-40630.	8.0	25
108	Plasmonic nanoparticle-analyte nanoarchitectronics combined with efficient analyte deposition method on regenerated cellulose-based SERS platform. Cellulose, 2021, 28, 11493-11502.	4.9	25

#	Article	IF	Citations
109	Recent progress of functional metal–organic framework materials for water treatment using sulfate radicals. Environmental Research, 2022, 211, 112956.	7.5	25
110	Enhancement of thermoelectric properties of La-doped SrTiO ₃ bulk by introducing nanoscale porosity. Royal Society Open Science, 2019, 6, 190870.	2.4	24
111	A Singleâ€Step Synthesis of Electroactive Mesoporous ProDOTâ€Silica Structures. Angewandte Chemie - International Edition, 2015, 54, 8407-8410.	13.8	22
112	Soft-templated synthesis of mesoporous nickel oxide using poly(styrene-block-acrylic) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5 4.4	0 622 Td (aci
113	Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors. Nanomaterials, 2021, 11, 395.	4.1	22
114	Material Nanoarchitectonics of Functional Polymers and Inorganic Nanomaterials for Smart Supercapacitors. Small, 2022, 18, e2102397.	10.0	22
115	Impact of Micropores and Dopants to Mitigate Lithium Polysulfides Shuttle over High Surface Area of ZIF-8 Derived Nanoporous Carbons. ACS Applied Energy Materials, 2020, 3, 5523-5532.	5.1	21
116	A recyclable indoor air filter system based on a photocatalytic metal–organic framework for the removal of harmful volatile organic compounds. Chemical Engineering Journal, 2022, 430, 132891.	12.7	21
117	Selfâ€Doped Conjugated Polymeric Nanoassembly by Simplified Process for Optical Cancer Theragnosis. Advanced Functional Materials, 2015, 25, 2260-2269.	14.9	20
118	Shape-controlled synthesis of mesoporous iron phosphate materials with crystallized frameworks. Chemical Communications, 2015, 51, 13806-13809.	4.1	20
119	Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles. Chemical Communications, 2018, 54, 10347-10350.	4.1	20
120	Adsorption and Oxidative Desorption of Acetaldehyde over Mesoporous Fe <i>_x</i> O <i>_y</i> H <i>_z</i> /Al ₂ O ₃ . ACS Omega, 2019, 4, 5382-5391.	3.5	20
121	A facile surfactant-assisted synthesis of carbon-supported dendritic Pt nanoparticles with high electrocatalytic performance for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 280, 1-6.	4.4	20
122	Electrochromic pattern formation by photo cross-linking reaction of PEDOT side chains. Macromolecular Research, 2009, 17, 791-796.	2.4	19
123	Electrochemical supermolecular templating of mesoporous Rh films. Nanoscale, 2019, 11, 10581-10588.	5.6	19
124	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2020, 8, 14966-14974.	10.3	19
125	Room Temperature Solidâ€State Synthesis of a Conductive Polymer for Applications in Stable I ₂ â€Free Dyeâ€Sensitized Solar Cells. ChemSusChem, 2012, 5, 2173-2180.	6.8	18
126	Highly Fluorescent Conjugated Polyelectrolyte for Protein Sensing and Cell-Compatible Chemosensing Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3305-3311.	8.0	18

#	Article	IF	Citations
127	Trimetallic Mesoporous AuCuNi Electrocatalysts with Controlled Compositions Using Block Copolymer Micelles as Templates. Small Methods, 2018, 2, 1800283.	8.6	18
128	Ultra-thin, highly graphitized carbon nanosheets into three-dimensional interconnected framework utilizing a ball mill mixing of precursors. Chemical Engineering Journal, 2019, 374, 1214-1220.	12.7	18
129	Association of Dipeptidyl Peptidase-4 Inhibitor Use and Amyloid Burden in Patients With Diabetes and AD-Related Cognitive Impairment. Neurology, 2021, 97, e1110-e1122.	1.1	18
130	TiO2nanoparticulate-wire hybrids for highly efficient solid-state dye-sensitized solar cells using SSP-PEDOTs. RSC Advances, 2014, 4, 44555-44562.	3.6	17
131	Electrochemical preparation system for unique mesoporous hemisphere gold nanoparticles using block copolymer micelles. RSC Advances, 2020, 10, 8309-8313.	3.6	17
132	Structurally controlled layered Ni3C/graphene hybrids using cyano-bridged coordination polymers. Electrochemistry Communications, 2019, 100, 74-80.	4.7	16
133	ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale, 2021, 13, 11086-11092.	5.6	16
134	Catalytic Polymerization of Anthracene in a Recyclable SBAâ€15 Reactor with High Iron Content by a Friedel–Crafts Alkylation. Angewandte Chemie - International Edition, 2012, 51, 2859-2863.	13.8	15
135	Threeâ€Dimensional Macroporous Graphitic Carbon for Supercapacitor Application. ChemistrySelect, 2018, 3, 4522-4526.	1.5	15
136	Synthesis of CdS/ZnO Hybrid Nanoarchitectured Films with Visible Photocatalytic Activity. Bulletin of the Chemical Society of Japan, 2018, 91, 1556-1560.	3.2	15
137	Synthesis and Characterization of Dendritic Pt Nanoparticles by Using Cationic Surfactant. Bulletin of the Chemical Society of Japan, 2018, 91, 1333-1336.	3.2	15
138	Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application. Polymers, 2020, 12, 1666.	4.5	15
139	Facile fabrication of CuxSy/Carbon composites using lignosulfonate for efficient palladium recovery under strong acidic conditions. Journal of Hazardous Materials, 2020, 391, 122253.	12.4	15
140	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie - International Edition, 2021, 60, 9660-9665.	13.8	15
141	Mesoporous Rh nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. Journal of Industrial and Engineering Chemistry, 2021, 96, 371-375.	5.8	15
142	Holographic Recording on Photopolymers Containing Pyrene for Enhanced Fluorescence Intensity. Macromolecules, 2008, 41, 7160-7165.	4.8	14
143	Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study. Cellulose, 2022, 29, 817-833.	4.9	14
144	Gram-Scale Synthesis of Bimetallic ZIFs and Their Thermal Conversion to Nanoporous Carbon Materials. Nanomaterials, 2019, 9, 1796.	4.1	13

#	Article	IF	Citations
145	Core-shell structured metal-organic framework-derived carbon with redox-active polydopamine nanothin film. Materials Letters, 2019, 253, 178-182.	2.6	12
146	Synthesis of nanoporous calcium carbonate spheres using double hydrophilic block copolymer poly(acrylic acid-b-N-isopropylacrylamide). Materials Letters, 2018, 230, 143-147.	2.6	11
147	Electrochemical Modulation of Color and Fluorescence in One Cell Using Conducting Polymers. Molecular Crystals and Liquid Crystals, 2011, 538, 39-44.	0.9	10
148	Synthesis of Mesoporous TiO2-B Nanobelts with Highly Crystalized Walls toward Efficient H2 Evolution. Nanomaterials, 2019, 9, 919.	4.1	10
149	Single Crystal Growth of Two-Dimensional Cyano-Bridged Coordination Polymer of Co(H2O)2Ni(CN)4·4H2O Using Trisodium Citrate Dihydrate. Bulletin of the Chemical Society of Japan, 2019, 92, 1263-1267.	3.2	10
150	Water Purification: Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification (Small 16/2019). Small, 2019, 15, 1970085.	10.0	10
151	A Facile Synthesis of Hematite Nanorods from Rice Starch and Their Application to Pb(II) Ions Removal. ChemistrySelect, 2019, 4, 3730-3736.	1.5	10
152	A dual-functional monomer having an epoxy and methacrylate group for holographic recording. Journal of Materials Chemistry, 2008, 18, 4762.	6.7	9
153	Coating of Pt-Loaded Mesoporous Silica Layers on Ceramics Scaffolds for Practical Preservation System for Greengrocery. ACS Applied Materials & System for Greengrocery. ACS Applied Materials & System for Greengrocery.	8.0	9
154	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	10.3	9
155	Gold nanoparticles anchored on mesoporous zirconia thin films for efficient catalytic oxidation of carbon monoxide at low temperatures. Microporous and Mesoporous Materials, 2019, 288, 109530.	4.4	9
156	Facile Synthesis of Palladiumâ€Nanoparticleâ€Embedded Nâ€Doped Carbon Fibers for Electrochemical Sensing. ChemPlusChem, 2018, 83, 401-406.	2.8	8
157	Excess Heat Production by the Pair Annihilation of Ionic Vacancies in Copper Redox Reactions. Scientific Reports, 2019, 9, 13695.	3.3	8
158	Lyotropic Liquid Crystalline Mesophases Made of Saltâ€Acidâ€Surfactant Systems for the Synthesis of Novel Mesoporous Lithium Metal Phosphates. ChemPlusChem, 2019, 84, 1544-1553.	2.8	6
159	Fluorescent Grating Patterns of Photopolymer Film Containing Ethylene Glycol Phenyl Ether Acrylate. Journal of Nanoscience and Nanotechnology, 2008, 8, 4616-4620.	0.9	5
160	Magnetic properties of polycrystalline Y-type hexaferrite Ba2-xSrxNi2(Fe1-yAly)12O22 using M \tilde{A} ¶ssbauer spectroscopy. AlP Advances, 2020, 10, .	1.3	5
161	Fluorescent Photopolymer for Holographic Patterning. Molecular Crystals and Liquid Crystals, 2008, 491, 67-73.	0.9	4
162	Waterborne Polyacrylic/PEDOT Nanocomposites for Conductive Transparent Adhesives. Journal of Nanoscience and Nanotechnology, 2013, 13, 7631-7636.	0.9	4

#	Article	IF	CITATIONS
163	Cyano-Bridged Cu-Ni Coordination Polymer Nanoflakes and Their Thermal Conversion to Mixed Cu-Ni Oxides. Nanomaterials, 2018, 8, 968.	4.1	4
164	Photodegradation Activity of Poly(ethylene oxide-b- <i>$\hat{l}\mu$</i> -caprolactone)-Templated Mesoporous TiO ₂ Coated with Au and Pt. Journal of Nanoscience and Nanotechnology, 2020, 20, 5276-5281.	0.9	4
165	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie, 2021, 133, 9746-9751.	2.0	4
166	3D Image Recording on Photopolymer Films Containing Molecular Composites of a New s-Triazine Monomer and Acrylate Monomer by Dual Photopolymerization. Journal of Nanoscience and Nanotechnology, 2008, 8, 4702-4706.	0.9	3
167	Evaluation of residual stress and texture in isotope based Mg ¹¹ B ₂ superconductor using neutron diffraction. RSC Advances, 2018, 8, 39455-39462.	3.6	3
168	Micelle-Assisted Strategy for the Direct Synthesis of Large-Sized Mesoporous Platinum Catalysts by Vapor Infiltration of a Reducing Agent. Nanomaterials, 2018, 8, 841.	4.1	3
169	Holographic security media prepared from photochromic fluorescent films. Proceedings of SPIE, 2008,	0.8	2
170	Preparation and Holographic Recording of Fluorescent Photopolymer Films Containing Anthracene Polymer for Security. Journal of the Optical Society of Korea, 2010, 14, 305-309.	0.6	2
171	Photopolymers containing epoxy monomers for holographic recording. , 2007, 6488, 32.		1
172	Solar Cells: Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive Polymer up to 6.8% (Adv. Funct. Mater. 24/2011). Advanced Functional Materials, 2011, 21, 4698-4698.	14.9	1
173	Highly Ordered Poly(thiophene)s Prepared in Mesoporous Silica Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 4567-4572.	0.9	1
174	Investigation of Spin Reorientation in Ga Substituted Y-type Hexaferrite based on Mössbauer Spectroscopy. Journal of the Korean Physical Society, 2018, 73, 1708-1711.	0.7	1
175	Delithiated Fe1-xMgxPO4 cathode materials: Structural, magnetic, and Mössbauer studies. AIP Advances, 2020, 10, 015214.	1.3	1
176	\tilde{MAq} ssbauer Studies of BaCoZnFe ₁₆ O ₂₇ W-type Hexaferrite. Journal of Magnetics, 2018, 23, 644-647.	0.4	1
177	The photopolymer containing dual functional monomers for holographic recording. , 2007, , .		0
178	Preparation of Conductive Transparent Adhesive Films from Carbon Nanomaterials and Polar Acrylate. Journal of Nanoscience and Nanotechnology, 2011, 11, 6306-6311.	0.9	0
179	Inside Cover: Catalytic Polymerization of Anthracene in a Recyclable SBA-15 Reactor with High Iron Content by a Friedel-Crafts Alkylation (Angew. Chem. Int. Ed. 12/2012). Angewandte Chemie - International Edition, 2012, 51, 2786-2786.	13.8	0