Zhijian Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339088/publications.pdf

Version: 2024-02-01

16 papers	590 citations	687220 13 h-index	940416 16 g-index
16	16	16	781
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The lncRNA-AK046375 Upregulates Metallothionein-2 by Sequestering miR-491-5p to Relieve the Brain Oxidative Stress Burden after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-26.	1.9	12
2	Endothelial Regulation by Exogenous Annexin A1 in Inflammatory Response and BBB Integrity Following Traumatic Brain Injury. Frontiers in Neuroscience, 2021, 15, 627110.	1.4	8
3	Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2021, 1-21.	1.9	54
4	Bexarotene promotes microglia/macrophages - Specific brain - Derived Neurotrophic factor expression and axon sprouting after traumatic brain injury. Experimental Neurology, 2020, 334, 113462.	2.0	16
5	<p>The association of neutrophil-to-lymphocyte ratio and delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: possible involvement of cerebral blood perfusion</p> . Neuropsychiatric Disease and Treatment, 2019, Volume 15, 1001-1007.	1.0	30
6	Apolipoprotein E Deficiency Aggravates Neuronal Injury by Enhancing Neuroinflammation via the JNK/c-Jun Pathway in the Early Phase of Experimental Subarachnoid Hemorrhage in Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	1.9	57
7	Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury. Experimental Neurology, 2019, 313, 37-48.	2.0	33
8	Clinical and Basic Evaluation of the Prognostic Value of Uric Acid in Traumatic Brain Injury. International Journal of Medical Sciences, 2018, 15, 1072-1082.	1.1	15
9	Bexarotene protects against neurotoxicity partially through a PPAR $\hat{1}^3$ -dependent mechanism in mice following traumatic brain injury. Neurobiology of Disease, 2018, 117, 114-124.	2.1	38
10	Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E. Neuroscience, 2017, 343, 434-448.	1.1	46
11	The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain, Behavior, and Immunity, 2017, 65, 183-194.	2.0	86
12	ApoE Influences the Blood-Brain Barrier Through the NF-κB/MMP-9 Pathway After Traumatic Brain Injury. Scientific Reports, 2017, 7, 6649.	1.6	47
13	Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain Research, 2016, 1646, 589-600.	1.1	73
14	Intraventricular apolipoprotein ApoJ infusion acts protectively in Traumatic Brain Injury. Journal of Neurochemistry, 2016, 136, 1017-1025.	2.1	26
15	Peroxisome Proliferator–Activated Receptor β/δ Alleviates Early Brain Injury After Subarachnoid Hemorrhage in Rats. Stroke, 2016, 47, 196-205.	1.0	25
16	Effect of APOE Gene Polymorphism on Early Cerebral Perfusion After Aneurysmal Subarachnoid Hemorrhage. Translational Stroke Research, 2015, 6, 446-450.	2.3	24