
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6338960/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF               | CITATIONS        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1  | Less can be more: Fine tuning the maternal brain. Neuroscience and Biobehavioral Reviews, 2022, 133, 104475.                                                                                                                                          | 6.1              | 29               |
| 2  | Associations Between Prenatal Exposure to Serotonergic Medications and Biobehavioral Stress<br>Regulation: Protocol for a Systematic Review and Meta-analysis. JMIR Research Protocols, 2022, 11,<br>e33363.                                          | 1.0              | 0                |
| 3  | Neurobiologie de la dépression post-partum : la « douleur » émotionnelle de la mère et du nourris<br>2022, , 173-205.                                                                                                                                 | son.,            | Ο                |
| 4  | Memory and Motherhood: Is It Better Than What We Think?. Journal of Women's Health, 2022, , .                                                                                                                                                         | 3.3              | 0                |
| 5  | Perinatal selective serotonin reuptake inhibitor (SSRI) and other antidepressant exposure effects on<br>anxiety and depressive behaviors in offspring: A review of findings in humans and rodent models.<br>Reproductive Toxicology, 2021, 99, 80-95. | 2.9              | 27               |
| 6  | Gestational Stress and Parenting: A Review of Human and Animal Literature. , 2021, , 317-346.                                                                                                                                                         |                  | 1                |
| 7  | Fos expression in the medial preoptic area and nucleus accumbens of female Japanese quail (Coturnix) Tj ETQq1 I<br>113357.                                                                                                                            | l 0.78431<br>2.1 | 4 rgBT /Ονε<br>1 |
| 8  | The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides, 2021, 143, 170593.                                                                                               | 2.4              | 12               |
| 9  | Neurobiology of peripartum mental illness. Handbook of Clinical Neurology / Edited By P J Vinken and<br>G W Bruyn, 2021, 182, 63-82.                                                                                                                  | 1.8              | 10               |
| 10 | Sex matters in neuroscience and neuropsychopharmacology. European Journal of Neuroscience, 2020, 52, 2423-2428.                                                                                                                                       | 2.6              | 12               |
| 11 | Effect of sertraline on central serotonin and hippocampal plasticity in pregnant and non-pregnant rats. Neuropharmacology, 2020, 166, 107950.                                                                                                         | 4.1              | 11               |
| 12 | Audiogenic seizure as a model of sudden death in epilepsy: A comparative study between four inbred mouse strains from early life to adulthood. Epilepsia, 2020, 61, 342-349.                                                                          | 5.1              | 25               |
| 13 | Moving Forward From COVID-19: Bridging Knowledge Gaps in Maternal Health With a New Conceptual<br>Model. Frontiers in Global Women S Health, 2020, 1, 586697.                                                                                         | 2.3              | 0                |
| 14 | Pregnancy: a final frontier in mental health research. Archives of Women's Mental Health, 2019, 22, 831-832.                                                                                                                                          | 2.6              | 8                |
| 15 | Parental Brain Conference 2018. Journal of Neuroendocrinology, 2019, 31, e12789.                                                                                                                                                                      | 2.6              | 0                |
| 16 | The Neurobiology of Maternal Mental Illness: Current understanding and future directions. Archives of Women's Mental Health, 2019, 22, 407-408.                                                                                                       | 2.6              | 5                |
| 17 | Glyphosate and glyphosateâ€based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. Journal of Neuroendocrinology, 2019, 31, e12731.                                               | 2.6              | 69               |
| 18 | Serotonin and motherhood: From molecules to mood. Frontiers in Neuroendocrinology, 2019, 53, 100742.                                                                                                                                                  | 5.2              | 41               |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | High social motivation induces deficits in maternal behaviour but not plasticity of the subventricular<br>zone in Japanese quail ( Coturnix japonica ). Journal of Neuroendocrinology, 2019, 31, e12716.                                     | 2.6 | 2         |
| 20 | Perinatal fluoxetine has enduring sexually differentiated effects on neurobehavioral outcomes related to social behaviors. Neuropharmacology, 2019, 144, 70-81.                                                                              | 4.1 | 34        |
| 21 | Selective serotonin reuptake inhibitor effects on neural biomarkers of perinatal depression. Archives of Women's Mental Health, 2019, 22, 431-435.                                                                                           | 2.6 | 11        |
| 22 | Perinatal SSRI medications and offspring hippocampal plasticity: interaction with maternal stress and sex. Hormones, 2018, 17, 15-24.                                                                                                        | 1.9 | 15        |
| 23 | Perinatal selective serotonin reuptake inhibitor (SSRI) effects on body weight at birth and beyond: A<br>review of animal and human studies. Reproductive Toxicology, 2018, 77, 109-121.                                                     | 2.9 | 27        |
| 24 | Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors,<br>neurodevelopment and the epigenome. Neuroscience and Biobehavioral Reviews, 2018, 85, 102-116.                                            | 6.1 | 48        |
| 25 | Perinatal fluoxetine prevents the effect of pre-gestational maternal stress on 5-HT in the PFC, but<br>maternal stress has enduring effects on mPFC synaptic structure in offspring. Neuropharmacology,<br>2018, 128, 168-180.               | 4.1 | 31        |
| 26 | Perinatal fluoxetine increases hippocampal neurogenesis and reverses the lasting effects of pre-gestational stress on serum corticosterone, but not on maternal behavior, in the rat dam.<br>Behavioural Brain Research, 2018, 339, 222-231. | 2.2 | 28        |
| 27 | The HPA Axis During the Perinatal Period: Implications for Perinatal Depression. Endocrinology, 2018, 159, 3737-3746.                                                                                                                        | 2.8 | 68        |
| 28 | Longâ€ŧerm negative impact of an inappropriate first antiepileptic medication on the efficacy of a second antiepileptic medication in mice. Epilepsia, 2018, 59, e109-e113.                                                                  | 5.1 | 9         |
| 29 | The Neurobiology of Postpartum Anxiety and Depression. Trends in Neurosciences, 2017, 40, 106-120.                                                                                                                                           | 8.6 | 191       |
| 30 | Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in<br>pre-adolescent male and female rats: Interactions with pre-gestational maternal stress.<br>Psychoneuroendocrinology, 2017, 84, 159-171.        | 2.7 | 55        |
| 31 | Exposure to glyphosate and glyphosate-based herbicides during the perinatal period affect maternal behavior and maternal brain plasticity. Toxicology Letters, 2017, 280, S151.                                                              | 0.8 | 1         |
| 32 | Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in<br>domestic horses (Equus caballus). PLoS ONE, 2017, 12, e0182257.                                                                        | 2.5 | 62        |
| 33 | Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin<br>density in the PFC and hippocampus of offspring at weaning. Developmental Psychobiology, 2016, 58,<br>315-327.                             | 1.6 | 36        |
| 34 | Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams. Neuroscience, 2016, 327, 32-43.                                                       | 2.3 | 48        |
| 35 | Prenatal stress and earlyâ€life exposure to fluoxetine have enduring effects on anxiety and hippocampal<br>BDNF gene expression in adult male offspring. Developmental Psychobiology, 2016, 58, 427-438.                                     | 1.6 | 61        |
| 36 | Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Hormones and Behavior, 2016, 80, 47-57.                                              | 2.1 | 78        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Neuroplasticity in the maternal hippocampus: Relation to cognition and effects of repeated stress.<br>Hormones and Behavior, 2016, 77, 86-97.                                                                           | 2.1 | 97        |
| 38 | Effects of stress early in gestation on hippocampal neurogenesis and glucocorticoid receptor density in pregnant rats. Neuroscience, 2015, 290, 379-388.                                                                | 2.3 | 45        |
| 39 | Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects<br>on hippocampal plasticity. Psychopharmacology, 2015, 232, 1231-1244.                                            | 3.1 | 56        |
| 40 | Long-Term Corticosterone Exposure Decreases Insulin Sensitivity and Induces Depressive-Like<br>Behaviour in the C57BL/6NCrl Mouse. PLoS ONE, 2014, 9, e106960.                                                          | 2.5 | 52        |
| 41 | Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring.<br>Developmental Psychobiology, 2014, 56, 885-896.                                                                         | 1.6 | 15        |
| 42 | Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult<br>Female Rats. Neural Plasticity, 2014, 2014, 1-9.                                                                     | 2.2 | 33        |
| 43 | Developmental fluoxetine exposure facilitates sexual behavior in female offspring.<br>Psychopharmacology, 2014, 231, 123-133.                                                                                           | 3.1 | 42        |
| 44 | Altered emotionality, hippocampus-dependent performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice. Stress, 2014, 17, 108-116.                                                          | 1.8 | 46        |
| 45 | Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring. Psychoneuroendocrinology, 2013, 38, 1618-1629.                         | 2.7 | 67        |
| 46 | The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring. Frontiers in Cellular Neuroscience, 2013, 7, 73.                                                          | 3.7 | 93        |
| 47 | Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on<br>Post-Operative Pain in Sprague-Dawley Rat Offspring. PLoS ONE, 2013, 8, e57608.                                             | 2.5 | 50        |
| 48 | Perinatal Selective Serotonin Reuptake Inhibitor Exposure: Impact on Brain Development and Neural<br>Plasticity. Neuroendocrinology, 2012, 95, 39-46.                                                                   | 2.5 | 26        |
| 49 | Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring. Neuroscience, 2012, 220, 131-141.                                    | 2.3 | 86        |
| 50 | Chronic fluoxetine treatment and maternal adversity differentially alter neurobehavioral outcomes in the rat dam. Behavioural Brain Research, 2012, 228, 159-168.                                                       | 2.2 | 84        |
| 51 | Dendritic morphology in the striatum and hypothalamus differentially exhibits experience-dependent<br>changes in response to maternal care and early social isolation. Behavioural Brain Research, 2012, 233,<br>79-89. | 2.2 | 44        |
| 52 | A validated microfluidicsâ€based <scp>LC</scp> â€chipâ€ <scp>MS</scp> / <scp>MS</scp> method for the quantitation of fluoxetine and norfluoxetine in rat serum. Electrophoresis, 2012, 33, 3370-3379.                   | 2.4 | 25        |
| 53 | Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience, 2012, 227, 201-210.                                                                             | 2.3 | 38        |
| 54 | Prenatal SSRI exposure alters neonatal corticosteroid binding globulin, infant cortisol levels, and emerging HPA function. Psychoneuroendocrinology, 2012, 37, 1019-1028.                                               | 2.7 | 68        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Stress and the pregnant female: Impact on hippocampal cell proliferation, but not affective-like behaviors. Hormones and Behavior, 2011, 59, 572-580.                                                                                        | 2.1 | 66        |
| 56 | Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence. PLoS ONE, 2011, 6, e24003.                                                                    | 2.5 | 154       |
| 57 | Everyday life memory deficits in pregnant women Canadian Journal of Experimental Psychology, 2011, 65, 27-37.                                                                                                                                | 0.8 | 56        |
| 58 | Pregnancy Decreases Oestrogen Receptor $\hat{I}\pm$ Expression and Pyknosis, but not Cell Proliferation or Survival, in the Hippocampus. Journal of Neuroendocrinology, 2010, 22, 248-257.                                                   | 2.6 | 55        |
| 59 | The α-fetoprotein knock-out mouse model suggests that parental behavior is sexually differentiated under the influence of prenatal estradiol. Hormones and Behavior, 2010, 57, 434-440.                                                      | 2.1 | 18        |
| 60 | Neonatal S100B Protein Levels After Prenatal Exposure to Selective Serotonin Reuptake Inhibitors.<br>Pediatrics, 2009, 124, e662-e670.                                                                                                       | 2.1 | 56        |
| 61 | Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during<br>the estrous cycle, pregnancy, lactation and aging. Frontiers in Neuroendocrinology, 2009, 30, 343-357.                                   | 5.2 | 265       |
| 62 | Offspring-exposure reduces depressive-like behaviour in the parturient female rat. Behavioural Brain<br>Research, 2009, 197, 55-61.                                                                                                          | 2.2 | 36        |
| 63 | Reproductive experience alters corticosterone and CBG levels in the rat dam. Physiology and Behavior, 2009, 96, 108-114.                                                                                                                     | 2.1 | 72        |
| 64 | Endocrine regulation of cognition and neuroplasticity: Our pursuit to unveil the complex<br>interaction between hormones, the brain, and behaviour Canadian Journal of Experimental<br>Psychology, 2008, 62, 247-260.                        | 0.8 | 109       |
| 65 | ERα, but not ERβ, mediates the expression of sexual behavior in the female rat. Behavioural Brain<br>Research, 2008, 191, 111-117.                                                                                                           | 2.2 | 79        |
| 66 | The Role of Reproductive Experience on Hippocampal Function and Plasticity. , 2008, , 493-508.                                                                                                                                               |     | 1         |
| 67 | Maternal care affects male and female offspring working memory and stress reactivity. Physiology and Behavior, 2007, 92, 939-950.                                                                                                            | 2.1 | 79        |
| 68 | Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam.<br>Neuroscience, 2007, 149, 53-67.                                                                                                          | 2.3 | 183       |
| 69 | First reproductive experience persistently affects spatial reference and working memory in the<br>mother and these effects are not due to pregnancy or â€~mothering' alone. Behavioural Brain Research,<br>2006, 175, 157-165.               | 2.2 | 111       |
| 70 | Reproductive experience differentially affects spatial reference and working memory performance in the mother. Hormones and Behavior, 2006, 49, 143-149.                                                                                     | 2.1 | 133       |
| 71 | High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell<br>proliferation and behavior of offspring: A model of post-partum stress and possible depression.<br>Hormones and Behavior, 2006, 50, 370-382. | 2.1 | 186       |
| 72 | Hippocampal morphology is differentially affected by reproductive experience in the mother. Journal of Neurobiology, 2006, 66, 71-81.                                                                                                        | 3.6 | 151       |

| #  | Article                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus, 2006, 16, 225-232.                             | 1.9 | 210       |
| 74 | Input and word learning: caregivers' sensitivity to lexical category distinctions. Journal of Child Language, 2003, 30, 711-729. | 1.2 | 25        |
| 75 | Input and word learning: caregivers' sensitivity to lexical category distinctions. Journal of Child Language, 2003, 30, 711-29.  | 1.2 | Ο         |
| 76 | Editorial: Neurobiology of Peripartum Mental Illness. Frontiers in Global Women S Health, 0, 3, .                                | 2.3 | 0         |