Viktor V Naumov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6338947/publications.pdf Version: 2024-02-01

VIETOR V NALIMOV

#	Article	IF	CITATIONS
1	Investigations of nanocrystalline SnS films' surface morphology modification during inductively coupled argon plasma sputtering. Semiconductor Science and Technology, 2014, 29, 015009.	2.0	18
2	Growth and properties of PbTe films on porous silicon. Infrared Physics and Technology, 1999, 40, 337-342.	2.9	15
3	A simple electrochemical micropump: Design and fabrication. Journal of Physics: Conference Series, 2016, 741, 012167.	0.4	13
4	Structural properties of Pb1â^'xEuxSe/CaF2/Si (1 1 1). Semiconductor Science and Technology, 2007, 22 1317-1322.	2.0	12
5	The effect of low-energy ion bombardment on the density and crystal structure of thin films. Technical Physics, 2001, 46, 1020-1025.	0.7	11
6	Lead selenide nanowire growth by vapor-liquid-solid mechanism under mask during plasma processing. Technical Physics Letters, 2011, 37, 929-931.	0.7	11
7	The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma. Technical Physics Letters, 2018, 44, 518-521.	0.7	11
8	Enhancement of the transversal magnetooptical Kerr effect in nanoperforated cobalt films. Technical Physics Letters, 2009, 35, 589-593.	0.7	9
9	Low energy selective etching of metal films in oxygen-containing high-density argon plasma. Journal of Surface Investigation, 2016, 10, 855-859.	0.5	9
10	Features of CoSi2 phase formation by two-stage rapid thermal annealing of Ti/Co/Ti/Si(100) structures. Technical Physics Letters, 2011, 37, 112-115.	0.7	8
11	Degradation of Titanium Electrodes in the Alternating Polarity Electrolysis. International Journal of Electrochemical Science, 2019, , 5211-5225.	1.3	8
12	Contact resistance and lifecycle of a single- and multiple-contact MEMS switch. Microsystem Technologies, 2019, 25, 4135-4141.	2.0	8
13	Fabrication and study of porous PbTe layers on silicon substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1801-1804.	0.8	7
14	Cyclic voltammetry studies of silicon–aluminum thin-film electrodes synthesized in the presence of oxygen. Russian Journal of Electrochemistry, 2015, 51, 1157-1161.	0.9	7
15	Application of abnormally high sputtering rate of PbTe(Te) single crystals during inductively coupled argon plasma treatment for fabrication of nanostructures. Semiconductor Science and Technology, 2015, 30, 035017.	2.0	7
16	Investigations of the inductively coupled argon plasma sputtering of Pb1 â^' x Sn x Te ternary solid solution. Journal of Surface Investigation, 2012, 6, 643-646.	0.5	6
17	Surface nanostructuring of Culn _{1â^'<i>x</i>} Ga _{<i>x</i>} Se ₂ films using argon plasma treatment. Semiconductor Science and Technology, 2017, 32, 075014.	2.0	6
18	Plasma-assisted surface nanostructuring of epitaxial Pb _{1â^'<i>x</i>} Sn _{<i>x</i>} Te (0 ≤i>x ≤) films. Semiconductor Science and Technology, 2019, 34, 095001.	2.0	6

0.5

3

#	Article	IF	CITATIONS
19	Formation of Nanoporous Copper-Silicide Films. Semiconductors, 2019, 53, 395-399.	0.5	6
20	Determination of Diffusion Coefficients of Lithium in Solid Electrolyte LiPON. Batteries, 2021, 7, 21.	4.5	6
21	Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of Ti/Co/Ti/Si(100) structures. Russian Microelectronics, 2011, 40, 389-394.	0.5	5
22	Fabrication of porous nanostructured lead chalcogenide semiconductors for modern thermoelectric and optoelectronic applications. Journal of Physics: Conference Series, 2011, 291, 012023.	0.4	5
23	Secondary ion mass spectrometry study of the formation of a nanometer oxide film on a titanium nitride surface. Russian Microelectronics, 2016, 45, 242-255.	0.5	5
24	The Influence of Film Thickness on Annealing-Induced Grain Growth in Pt Films. Technical Physics, 2018, 63, 900-907.	0.7	5
25	A fast electrochemical actuator in the non-explosive regime. Journal of Micromechanics and Microengineering, 2019, 29, 114001.	2.6	5
26	Excessive number of high asperities for sputtered rough films. Physical Review B, 2021, 104, .	3.2	5
27	Investigations of PbSe layers after anodic electrochemical etching by scanning electron microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1918-1922.	0.8	4
28	Investigations of the pore formation in the lead selenide films using glacial acetic acid- and nitric acid-based electrolyte. Nanoscale Research Letters, 2012, 7, 338.	5.7	4
29	Changes in the conductivity of lead-selenide thin films after plasma etching. Semiconductors, 2016, 50, 1125-1129.	0.5	4
30	Study of the Relaxational Polarization Dynamics of the LiPON Solid Electrolyte. Russian Microelectronics, 2020, 49, 345-357.	0.5	4
31	Plasmaâ€assisted selfâ€formation of nanotip arrays on the surface of Cu(In,Ga)Se ₂ thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600135.	0.8	4
32	Formation of thin-film HfO2/Si(100) structures by high-frequency magnetron sputtering. Russian Microelectronics, 2011, 40, 383-388.	0.5	3
33	The effect of ion energy on the surface morphology of platinum film under high-frequency ion plasma sputtering. Technical Physics Letters, 2013, 39, 130-133.	0.7	3
34	Dynamics of oxide phases on the surface of single- and polycrystalline Pb1 â^' x Sn x Te films upon their investigation by the raman light scattering method. Optics and Spectroscopy (English Translation of) Tj ETQq0 C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ve s lock 10 Tf
35	Plasma sputtering of polycrystalline Pb1â~'xSnxTe thin films grown on glass substrates using hot wall deposition. Semiconductor Science and Technology, 2014, 29, 075020.	2.0	3

Features of the plasma sputtering of polycrystalline Pb1 â[^] x Sn x S films. Journal of Surface Investigation, 2014, 8, 602-606.

#	Article	IF	CITATIONS
37	Plasma sputtering of Pb1–x Eu x Te films with varied composition and structure. Journal of Surface Investigation, 2016, 10, 623-626.	0.5	3
38	Influence of a static magnetic field on the formation of silicide phases in a Cu/Si(100) structure upon isothermal annealing. Semiconductors, 2017, 51, 812-816.	0.5	3
39	Resistive contact MEMS switch in a "hot―operation mode. Journal of Physics: Conference Series, 2017, 917, 082001.	0.4	3
40	A Solid-State Lithium-Ion Battery: Structure, Technology, and Characteristics. Technical Physics Letters, 2020, 46, 215-219.	0.7	3
41	The Influence of Low-Energy Ion-Plasma Treatment on the Surface Morphology of Pt Films with Varying Strength of Crystalline Texture. Journal of Surface Investigation, 2020, 14, 777-783.	0.5	3
42	Formation and investigation of cobalt silicide ultrathin layers in Ti/Co/Ti-, TiN/Ti/Co-, and TiN/Co-on-silicon structures. Technical Physics, 2012, 57, 279-285.	0.7	2
43	Magnetomigration in granular cobalt-copper films deposited by the ion-plasma method. Technical Physics Letters, 2013, 39, 556-559.	0.7	2
44	Resonance properties of multilayer metallic nanocantilevers. , 2013, , .		2
45	Problems of the experimental implementation of MTJ. Journal of Physics: Conference Series, 2015, 643, 012105.	0.4	2
46	An experimental examination of thin films of lithium phosphorus oxynitride (a solid electrolyte). Technical Physics Letters, 2017, 43, 503-506.	0.7	2
47	Development of the Technology of Magnetron Sputtering Deposition of LiPON Films and Investigation of Their Characteristics. Russian Microelectronics, 2017, 46, 424-432.	0.5	2
48	Effect of the Pressure of Oxygen on the Plasma Oxidation of the Titanium Nitride Surface. Russian Microelectronics, 2019, 48, 402-408.	0.5	2
49	Testing of aluminium and its alloys as structural materials for a MEMS switch. Microsystem Technologies, 2020, 26, 1971-1980.	2.0	2
50	Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity. Russian Microelectronics, 2021, 50, 1-7.	0.5	2
51	lon-plasma sputtering of Co and Mo nanometer thin films near the sputtering threshold. Journal Physics D: Applied Physics, 2021, 54, 065204.	2.8	2
52	Surface Modification of Pb1 – xSnxSe Films during Plasma Treatment Near the Sputtering Threshold. Journal of Surface Investigation, 2020, 14, 1174-1178.	0.5	2
53	Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment. Crystals, 2022, 12, 111.	2.2	2
54	Effect of low-energy ion bombardment on the crystal structure and superconductivity of niobium films. Technical Physics, 2004, 49, 426-430.	0.7	1

#	Article	IF	CITATIONS
55	Dependence of the transversal magneto-optic Kerr effect on the incidence angle of light for ultrathin films of cobalt and Co/Cu/Co multilayers. Russian Microelectronics, 2009, 38, 251-256.	0.5	1
56	An automated stand for express-diagnostics of magnetoresistive structures. Russian Microelectronics, 2009, 38, 257-259.	0.5	1
57	Increasing adhesion of metallic films to silicon by ion bombardment during growth. Technical Physics, 2009, 54, 1072-1075.	0.7	1
58	Features of formation of high- <i>k</i> dielectric layer in w/ultrathin HfO ₂ /Si (100) structures under annealing. Proceedings of SPIE, 2013, , .	0.8	1
59	Electrostatically actuated MEMS switch with resistive contact. Proceedings of SPIE, 2014, , .	0.8	1
60	Effect of technological factors on the micromagnetic states of magnetic nanostructures. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 13-15.	0.6	1
61	Formation of W/HfO2/Si gate structures using in situ magnetron sputtering and rapid thermal annealing. Technical Physics, 2014, 59, 711-715.	0.7	1
62	Magnetomigration effect during the annealing of granular cobalt-copper films. Technical Physics Letters, 2014, 40, 145-148.	0.7	1
63	Self-formation of lead telluride nanostructures during argon plasma etching of single-crystal wafers. Journal of Physics: Conference Series, 2014, 541, 012017.	0.4	1
64	A low actuation voltage bistable MEMS switch: design, fabrication and preliminary testing. Proceedings of SPIE, 2016, , .	0.8	1
65	Fast electrochemical membrane actuator: Design, fabrication and preliminary testing. Journal of Physics: Conference Series, 2017, 917, 082006.	0.4	1
66	Structural Changes in Si–CuSi Films upon Intercalation of Lithium Ions. Technical Physics Letters, 2019, 45, 973-976.	0.7	1
67	Optimization of electrodes for the fast electrochemical actuator. Journal of Physics: Conference Series, 2019, 1410, 012197.	0.4	1
68	Thin-Film Solid State Lithium-Ion Batteries of the LiCoC2/LiPON/Si@O@Al System. Russian Microelectronics, 2021, 50, 333-338.	0.5	1
69	Choosing the electrode material for the fast electrochemical actuator. Journal of Physics: Conference Series, 2020, 1695, 012155.	0.4	1
70	<title>Simulation, fabrication, and dynamics characteristics of electrostatically actuated switches</title> . , 2008, , .		1
71	CoSi 2 /TiO 2 /SiO 2 /Si gate structure formation. , 2009, , .		0
72	Magnetoresistance of multilayered structures obtained by the magnetron method. Russian Microelectronics, 2009, 38, 334-338.	0.5	0

#	Article	IF	CITATIONS
73	Resonance properties of metallic nanocantilevers. Journal of Physics: Conference Series, 2014, 541, 012018.	0.4	0
74	MEMS switch with the active contact breaking mechanism. Journal of Physics: Conference Series, 2015, 643, 012091.	0.4	0
75	New plasma-assisted approach to the fabrication of Cu(In,Ga)(S,Se)2nanowires. Journal of Physics: Conference Series, 2017, 816, 012028.	0.4	0
76	The study of effect of solid electrolyte on charge-discharge characteristics of thin-film lithium-ion batteries. Journal of Physics: Conference Series, 2017, 917, 032030.	0.4	0
77	Impact of plasma nanostructuring on the electrical properties of Cu(In,Ga)Se2 films. Journal of Physics: Conference Series, 2019, 1238, 012040.	0.4	0
78	The Influence of Film Thickness on the Annealing-Induced Changes of Texture and of the Fraction of Crystalline Phase in Pt Films. Technical Physics, 2020, 65, 762-770.	0.7	0
79	Thin-film solid-state lithium-ion batteries. Materials and technology. Journal of Physics: Conference Series, 2021, 1967, 012043.	0.4	0
80	Effect of the Etching Profile of a Si Substrate on the Capacitive Characteristics of Three-Dimensional Solid-State Lithium-Ion Batteries. Batteries, 2021, 7, 65.	4.5	0
81	Characteristics of an all-solid-state lithium-ion battery prototype. Journal of Physics: Conference Series, 2020, 1695, 012193.	0.4	0
82	The Influence of Diffusion Barriers on the Capacitance Properties of Composite Anodes with Si–CuSi–Cu Composition. Technical Physics Letters, 2020, 46, 943-946.	0.7	0