
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6337986/publications.pdf Version: 2024-02-01

LOFPC KUDIA

#	Article	IF	CITATIONS
1	Ca2+-dependent successive phosphorylation of vacuolar transporter MTP8 by CBL2/3-CIPK3/9/26 and CPK5 is critical for manganese homeostasis in Arabidopsis. Molecular Plant, 2022, 15, 419-437.	8.3	30
2	Ca ²⁺ signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 2022, 64, 287-300.	8.5	67
3	The potassium channel GhAKT2bD is regulated by CBL–CIPK calcium signaling complexes and facilitates K ⁺ allocation in cotton. FEBS Letters, 2022, , .	2.8	1
4	Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnology Journal, 2021, 19, 74-86.	8.3	31
5	A role for calciumâ€dependent protein kinases in differential CO ₂ ―and ABAâ€controlled stomatal closing and low CO ₂ â€induced stomatal opening in Arabidopsis. New Phytologist, 2021, 229, 2765-2779.	7.3	38
6	Emerging roles of the CBL-CIPK calcium signaling network as key regulatory hub in plant nutrition. Journal of Plant Physiology, 2021, 257, 153335.	3.5	40
7	Plasma membrane calcineurin B″ike calciumâ€ion sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution. New Phytologist, 2021, 229, 2223-2237.	7.3	23
8	A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis. Developmental Cell, 2021, 56, 781-794.e6.	7.0	29
9	Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. Plant Physiology, 2021, 187, 537-549.	4.8	9
10	Elemental bioimaging of Na distribution in roots of Arabidopsis thaliana using laser ablation-ICP-MS under cold plasma conditions. Journal of Analytical Atomic Spectrometry, 2020, 35, 2057-2063.	3.0	6
11	Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. Plant Cell, 2020, 32, 2582-2601.	6.6	57
12	<scp>SCHENGEN</scp> receptor module drives localized <scp>ROS</scp> production and lignification in plant roots. EMBO Journal, 2020, 39, e103894.	7.8	82
13	Analyzing the Impact of Protein Overexpression on Ca2+ Dynamics and Development in Tobacco Pollen Tubes. Methods in Molecular Biology, 2020, 2160, 223-231.	0.9	2
14	Rebuilding core abscisic acid signaling pathways of <i>Arabidopsis</i> in yeast. EMBO Journal, 2019, 38, e101859.	7.8	25
15	A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth. PLoS Biology, 2019, 17, e3000085.	5.6	35
16	Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants, 2019, 5, 1012-1021.	9.3	73
17	How plants perceive salt. Nature, 2019, 572, 318-320.	27.8	42
18	CIPK11-Dependent Phosphorylation Modulates FIT Activity to Promote Arabidopsis Iron Acquisition in Response to Calcium Signaling. Developmental Cell, 2019, 48, 726-740.e10.	7.0	89

#	Article	IF	CITATIONS
19	A Multidrug and Toxin Efflux (MATE) Transporter Involved in Aluminum Resistance is Modulated by a CBL5/CIPK2 Calcium Sensor/Protein Kinase Complex. Biophysical Journal, 2019, 116, 169a-170a.	0.5	0
20	The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress. Developmental Cell, 2019, 48, 697-709.e5.	7.0	133
21	The Ca ²⁺ Sensor SCaBP3/CBL7 Modulates Plasma Membrane H ⁺ -ATPase Activity and Promotes Alkali Tolerance in Arabidopsis. Plant Cell, 2019, 31, 1367-1384.	6.6	106
22	<scp>ABA</scp> inhibits myristoylation and induces shuttling of the <scp>RGLG</scp> 1 E3 ligase to promote nuclear degradation of <scp>PP</scp> 2 <scp>CA</scp> . Plant Journal, 2019, 98, 813-825.	5.7	59
23	The Transcription Factor MYB59 Regulates K ⁺ /NO ₃ ^{â^'} Translocation in the Arabidopsis Response to Low K ⁺ Stress. Plant Cell, 2019, 31, 699-714.	6.6	100
24	Modulation of ABA responses by the protein kinase WNK8. FEBS Letters, 2019, 593, 339-351.	2.8	10
25	Fineâ€ŧuning of <scp>RBOHF</scp> activity is achieved by differential phosphorylation and Ca ²⁺ binding. New Phytologist, 2019, 221, 1935-1949.	7.3	111
26	Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex. Developmental Cell, 2019, 48, 87-99.e6.	7.0	74
27	The battle of two ions: Ca ²⁺ signalling against Na ⁺ stress. Plant Biology, 2019, 21, 39-48.	3.8	66
28	<i>N</i> â€myristoylation and <i>S</i> â€acylation are common modifications ofÂCa ²⁺ â€regulated <i>Arabidopsis</i> kinases and are required for activation of the SLAC1 anion channel. New Phytologist, 2018, 218, 1504-1521.	7.3	59
29	The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Current Biology, 2018, 28, 666-675.e5.	3.9	526
30	Advances and current challenges in calcium signaling. New Phytologist, 2018, 218, 414-431.	7.3	423
31	The <scp>BIG</scp> protein distinguishes the process of <scp>CO</scp> ₂ â€induced stomatal closure from the inhibition of stomatal opening by <scp>CO</scp> ₂ . New Phytologist, 2018, 218, 232-241.	7.3	43
32	De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36, 1211-1216.	17.5	559
33	Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 2018, 69, 4215-4226.	4.8	191
34	CBL1â€CIPK26â€mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Letters, 2018, 592, 2582-2593.	2.8	30
35	Genus-wide screening reveals four distinct types of structural plastid genome organization in <i>Pelargonium</i> (Geraniaceae). Genome Biology and Evolution, 2017, 9, evw271.	2.5	22
36	Lossâ€ofâ€function mutation of the calcium sensor <scp>CBL</scp> 1 increases aluminum sensitivity in <i>Arabidopsis</i> . New Phytologist, 2017, 214, 830-841.	7.3	50

#	Article	IF	CITATIONS
37	A phosphoinositideâ€specific phospholipase C pathway elicits stressâ€induced Ca ²⁺ signals and confers salt tolerance to rice. New Phytologist, 2017, 214, 1172-1187.	7.3	85
38	Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. Journal of Experimental Botany, 2017, 68, 3215-3230.	4.8	72
39	Nâ€ŧerminal Sâ€∎cylation facilitates tonoplast targeting of the calcium sensor <scp>CBL</scp> 6. FEBS Letters, 2017, 591, 3745-3756.	2.8	17
40	Peroxisomal CuAOζ and its product H2O2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. Journal of Experimental Botany, 2017, 68, 4851-4867.	4.8	33
41	Sexual attraction channelled in moss. Nature, 2017, 549, 35-36.	27.8	4
42	Multiparameter imaging of calcium and abscisic acid and highâ€resolution quantitative calcium measurements using Râ€GECO1â€mTurquoise in Arabidopsis. New Phytologist, 2017, 216, 303-320.	7.3	105
43	The Evolution of Calcium-Based Signalling in Plants. Current Biology, 2017, 27, R667-R679.	3.9	214
44	Two spatially and temporally distinct Ca ²⁺ signals convey <i>Arabidopsis thaliana</i> responses to K ⁺ deficiency. New Phytologist, 2017, 213, 739-750.	7.3	88
45	Integration of calcium and ABA signaling. Current Opinion in Plant Biology, 2016, 33, 83-91.	7.1	132
46	A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Scientific Reports, 2016, 6, 31645.	3.3	34
47	A Rice Ca ²⁺ Binding Protein Is Required for Tapetum Function and Pollen Formation. Plant Physiology, 2016, 172, 1772-1786.	4.8	50
48	Chloroplast-Specific in Vivo Ca ²⁺ Imaging Using Yellow Cameleon Fluorescent Protein Sensors Reveals Organelle-Autonomous Ca ²⁺ Signatures in the Stroma. Plant Physiology, 2016, 171, 2317-2330.	4.8	71
49	Lighting the Way to Protein-Protein Interactions: Recommendations on Best Practices for Bimolecular Fluorescence Complementation Analyses. Plant Cell, 2016, 28, 1002-1008.	6.6	151
50	Analyses of Ca ²⁺ dynamics using a ubiquitinâ€10 promoterâ€driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca ²⁺ responses in Arabidopsis and rice (<i>Oryza sativa</i>) roots. New Phytologist, 2015, 206, 751-760.	7.3	54
51	Increasing complexity and versatility: How the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium, 2015, 57, 231-246.	2.4	122
52	Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis. Plant Physiology, 2015, 169, 780-792.	4.8	126
53	Colorful Insights: Advances in Imaging Drive Novel Breakthroughs in Ca2+ Signaling. Molecular Plant, 2015, 8, 352-355.	8.3	22
54	Visualization and translocation of ternary Calcineurinâ€A/Calcineurinâ€B/Calmodulinâ€2 protein complexes by dualâ€color trimolecular fluorescence complementation. New Phytologist, 2015, 208, 269-279.	7.3	19

#	Article	IF	CITATIONS
55	Nitrate sensing and uptake in <i>Arabidopsis</i> are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Science Signaling, 2015, 8, ra43.	3.6	169
56	Vacuolar CBL-CIPK12 Ca2+-Sensor-Kinase Complexes Are Required for Polarized Pollen Tube Growth. Current Biology, 2015, 25, 1475-1482.	3.9	63
57	Cold Tolerance Encoded in One SNP. Cell, 2015, 160, 1045-1046.	28.9	18
58	Inhibition of the <i>Arabidopsis</i> Salt Overly Sensitive Pathway by 14-3-3 Proteins Â. Plant Cell, 2014, 26, 1166-1182.	6.6	193
59	Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1806-14.	7.1	171
60	Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Science Signaling, 2014, 7, ra86.	3.6	168
61	The vacuolar calcium sensors <scp>CBL</scp> 2 and <scp>CBL</scp> 3 affect seed size and embryonic development in <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 78, 146-156.	5.7	46
62	Protein Fragment Bimolecular Fluorescence Complementation Analyses for the In vivo Study of Protein-Protein Interactions and Cellular Protein Complex Localizations. Methods in Molecular Biology, 2014, 1062, 629-658.	0.9	30
63	Signaling in cells and organisms — calcium holds the line. Current Opinion in Plant Biology, 2014, 22, 14-21. Phylogenetics, character evolution and a subgeneric revision of the genus Pelargonium	7.1	147
64	(Geraniaceae) [if gte mso 9] <xml> <w:latentstyles <br="" deflockedstate="false">DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:lsdexception <br="" locked="false" priority="0" semihidden="false">UnbideWhenUsed="false" OFormat="true" Name="Normal"/>: <w:lsdexception <="" locked="false" td=""><td>0.3</td><td>35</td></w:lsdexception></w:lsdexception></w:latentstyles></xml>	0.3	35
65	Priority="9" SemiHidden="false" Unbide WhenUsed=". Phytotaxa, 2014, 159, 31 A New 12-Estradiol-Inducible Vector Set that Facilitates Easy Construction and Efficient Expression of Transgenes Reveals CBL3-Dependent Cytoplasm to Tonoplast Translocation of CIPK5. Molecular Plant, 2013, 6, 1814-1829.	8.3	66
66	Calcium and Reactive Oxygen Species Rule the Waves of Signaling. Plant Physiology, 2013, 163, 471-485.	4.8	184
67	High-Resolution Imaging of Cytoplasmic Ca ²⁺ Dynamics in <i>Arabidopsis</i> Roots. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073023.	0.3	15
68	Calcium - a central regulator of pollen germination and tube growth. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1573-1581.	4.1	232
69	Analyses of Ca2+ Accumulation and Dynamics in the Endoplasmic Reticulum of Arabidopsis Root Cells Using a Genetically Encoded Cameleon Sensor Â. Plant Physiology, 2013, 163, 1230-1241.	4.8	80
70	The Calcineurin B-Like Calcium Sensors CBL1 and CBL9 Together with Their Interacting Protein Kinase CIPK26 Regulate the Arabidopsis NADPH Oxidase RBOHF. Molecular Plant, 2013, 6, 559-569.	8.3	360
71	Ca ²⁺ Imaging in Plants Using Genetically Encoded Yellow Cameleon Ca ²⁺ Indicators. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066183.	0.3	18
72	Live Cell Imaging of Cytoplasmic Ca ²⁺ Dynamics in <i>Arabidopsis</i> Guard Cells. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072983.	0.3	19

#	Article	IF	CITATIONS
73	The Calcineurin B-Like Ca2+ Sensors CBL1 and CBL9 Function in Pollen Germination and Pollen Tube Growth in Arabidopsis. Molecular Plant, 2013, 6, 1149-1162.	8.3	64
74	S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Research, 2012, 22, 1155-1168.	12.0	115
75	Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17717-17722.	7.1	151
76	Analysis of calcium signaling pathways in plants. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1283-1293.	2.4	302
77	Phosphorylation of Calcineurin B-like (CBL) Calcium Sensor Proteins by Their CBL-interacting Protein Kinases (CIPKs) Is Required for Full Activity of CBL-CIPK Complexes toward Their Target Proteins. Journal of Biological Chemistry, 2012, 287, 7956-7968.	3.4	179
78	FRETâ€based genetically encoded sensors allow highâ€resolution live cell imaging of Ca ²⁺ dynamics. Plant Journal, 2012, 69, 181-192.	5.7	235
79	Quantitative analysis of dynamic protein–protein interactions <i>in planta</i> by a floatedâ€leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors. Plant Journal, 2011, 67, 542-553.	5.7	56
80	The CBL–CIPK Network for Decoding Calcium Signals in Plants. Signaling and Communication in Plants, 2011, , 235-258.	0.7	8
81	Calcium decoding mechanisms in plants. Biochimie, 2011, 93, 2054-2059.	2.6	241
82	Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21, 1116-1130.	12.0	261
83	The Chloroplast Calcium Sensor CAS Is Required for Photoacclimation in <i>Chlamydomonas reinhardtii</i> Â. Plant Cell, 2011, 23, 2950-2963.	6.6	145
84	CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant Journal, 2010, 61, 211-222.	5.7	228
85	A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal, 2010, 64, 355-365.	5.7	499
86	Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant Journal, 2010, 64, 851-863.	5.7	80
87	An International Bioinformatics Infrastructure to Underpin the <i>Arabidopsis</i> Community. Plant Cell, 2010, 22, 2530-2536.	6.6	23
88	Calcium Signals: The Lead Currency of Plant Information Processing. Plant Cell, 2010, 22, 541-563.	6.6	918
89	The Language of Calcium Signaling. Annual Review of Plant Biology, 2010, 61, 593-620.	18.7	1,093
90	Calcium: Not Just Another Ion. Plant Cell Monographs, 2010, , 17-54.	0.4	15

#	Article	IF	CITATIONS
91	New GATEWAY vectors for High Throughput Analyses of Protein–Protein Interactions by Bimolecular Fluorescence Complementation. Molecular Plant, 2009, 2, 1051-1058.	8.3	278
92	Heteromeric AtKC1·AKT1 Channels in Arabidopsis Roots Facilitate Growth under K+-limiting Conditions. Journal of Biological Chemistry, 2009, 284, 21288-21295.	3.4	152
93	Plant calcineurin B-like proteins and their interacting protein kinases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 985-992.	4.1	232
94	The CBL–CIPK Ca ²⁺ â€decoding signaling network: function and perspectives. New Phytologist, 2009, 184, 517-528.	7.3	374
95	A plastid protein crucial for Ca ²⁺ â€regulated stomatal responses. New Phytologist, 2008, 179, 675-686.	7.3	159
96	Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes <i>in planta</i> . Plant Journal, 2008, 56, 505-516.	5.7	652
97	In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC). Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4995.	0.3	193
98	Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca2+ Signaling Complexes in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 1346-1362.	6.6	271
99	The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 2007, 50, 347-363.	5.7	1,322
100	Two calcineurin Bâ€like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant Journal, 2007, 52, 223-239.	5.7	434
101	The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant Journal, 2007, 52, 473-484.	5.7	333
102	Calcium Signaling Networks Channel Plant K+ Uptake. Cell, 2006, 125, 1221-1223.	28.9	51
103	Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant Journal, 2006, 48, 857-872.	5.7	237
104	Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor. Journal of Plant Research, 2006, 119, 363-371.	2.4	21
105	Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiology, 2004, 134, 43-58.	4.8	564
106	The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis. Plant Cell, 2004, 16, 1912-1924.	6.6	294
107	Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 2004, 40, 428-438.	5.7	1,514
108	The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO Journal, 2004, 23, 3290-3302.	7.8	207

#	Article	IF	CITATIONS
109	Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219, 915-924.	3.2	271
110	The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant Journal, 2003, 36, 457-470.	5.7	286
111	The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 2003, 132, 666-680.	4.8	898
112	Calmodulins and Calcineurin B–like Proteins. Plant Cell, 2002, 14, S389-S400.	6.6	619
113	Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Molecular Genetics and Genomics, 2002, 267, 223-230.	2.1	32
114	PNPase activity determines the efficiency of mRNA 3'-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO Journal, 2002, 21, 6905-6914.	7.8	99
115	Interaction of the Response Regulator ARR4 with Phytochrome B in Modulating Red Light Signaling. Science, 2001, 294, 1108-1111.	12.6	299
116	The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial Complex I in Arabidopsis. Molecular Genetics and Genomics, 2001, 265, 2-13.	2.1	132
117	The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO Journal, 2001, 20, 1051-1063.	7.8	352
118	Molecular Characterization of At5PTase1, an Inositol Phosphatase Capable of Terminating Inositol Trisphosphate Signaling. Plant Physiology, 2001, 126, 801-810.	4.8	80
119	Novel Protein Kinases Associated with Calcineurin B-Like Calcium Sensors in Arabidopsis. Plant Cell, 1999, 11, 2393.	6.6	18
120	Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4718-4723.	7.1	422
121	Differential Expression and Nuclear Localization of Response Regulatorâ€Like Proteins from <i>Arabidopsis thaliana</i> ¹ . Plant Biology, 1999, 1, 495-505.	3.8	57
122	Degrading chloroplast mRNA: the role of polyadenylation. Trends in Biochemical Sciences, 1999, 24, 199-202.	7.5	100
123	RNA editing in an untranslated region of the Ginkgo chloroplast genome. Gene, 1999, 234, 81-86.	2.2	36
124	Novel Protein Kinases Associated with Calcineurin B–like Calcium Sensors in Arabidopsis. Plant Cell, 1999, 11, 2393-2405.	6.6	288
125	Differential Expression and Nuclear Localization of Response Regulator-Like Proteins from <i>Arabidopsis thaliana </i> *. Plant Biology, 1999, 1, 495-505.	3.8	1
126	The cox2 locus of the primitive angiosperm plant Acorus calamus:  molecular structure, transcript processing and RNA editing. Molecular Genetics and Genomics, 1998, 259, 591-600.	2.4	12

#	Article	IF	CITATIONS
127	Molecular characterization of a plant FKBP12 that does not mediate action of FK506 and rapamycin. Plant Journal, 1998, 15, 511-519.	5.7	85
128	The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of <i>Antirrhinum majus</i> L. Genome, 1996, 39, 243-248.	2.0	15
129	Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins EMBO Journal, 1996, 15, 1132-1141.	7.8	156
130	Polyadenylation accelerates degradation of chloroplast mRNA EMBO Journal, 1996, 15, 7137-7146.	7.8	117
131	Molecular characterization of a FKBP-type immunophilin from higher plants Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6964-6969.	7.1	75
132	Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO Journal, 1996, 15, 1132-41.	7.8	71
133	Polyadenylation accelerates degradation of chloroplast mRNA. EMBO Journal, 1996, 15, 7137-46.	7.8	47
134	Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids — a new regulatory mechanism?. Molecular Genetics and Genomics, 1993, 240, 238-244.	2.4	97
135	RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon EMBO Journal, 1992, 11, 1099-1103.	7.8	120
136	RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon. EMBO Journal, 1992, 11, 1099-103.	7.8	59