List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6337812/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Detection of Escherichia coli K12 in Water Using Slot Waveguide in Cascaded Ring Resonator. Silicon, 2022, 14, 851-857.                                                                                          | 1.8 | 15        |
| 2  | Urea sensor by racetrack silicon resonator. Optik, 2020, 208, 164042.                                                                                                                                            | 1.4 | 1         |
| 3  | Label-free biosensor array comprised of Vernier microring resonator and 3 × 3 optical coupler.<br>European Physical Journal Plus, 2020, 135, 1.                                                                  | 1.2 | 10        |
| 4  | Analytical investigation of ion-sensitive field effect transistorÂbased on graphene. Journal of<br>Materials Science: Materials in Electronics, 2020, 31, 6461-6466.                                             | 1.1 | 1         |
| 5  | Review and evaluation of methods for estimating delay at priority junctions. Australian Journal of<br>Civil Engineering, 2020, 18, 126-139.                                                                      | 0.6 | 2         |
| 6  | Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine<br>with Incremental Updates. International Journal of Fuzzy Systems, 2020, 22, 1376-1388.                          | 2.3 | 53        |
| 7  | Arc discharge technique to fabricate nanocarbon gas sensing platform. Superlattices and Microstructures, 2020, 141, 106479.                                                                                      | 1.4 | 0         |
| 8  | Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors, 2020, 20,<br>1506.                                                                                                        | 2.1 | 17        |
| 9  | Effect of motorcycle on the critical gap at priority junctions. Australian Journal of Civil Engineering, 2020, 18, 140-152.                                                                                      | 0.6 | 2         |
| 10 | Silicon sub-wavelength grating resonator structures for gas sensor. Superlattices and Microstructures, 2020, 142, 106506.                                                                                        | 1.4 | 4         |
| 11 | Analytical investigation of superior gas sensor based on phosphorene. Microsystem Technologies, 2019, 25, 897-903.                                                                                               | 1.2 | 3         |
| 12 | Support vector regression and neural networks analytical models for gas sensor based on molybdenum disulfide. Microsystem Technologies, 2019, 25, 115-119.                                                       | 1.2 | 7         |
| 13 | Silicon racetrack resonator based on nonlinear material. European Physical Journal D, 2019, 73, 1.                                                                                                               | 0.6 | 3         |
| 14 | A Computational Model of Neural Learning to Predict Graphene Based ISFET. Journal of Electronic<br>Materials, 2019, 48, 4647-4652.                                                                               | 1.0 | 3         |
| 15 | A new approach for prediction of graphene based ISFET using regression tree and neural network.<br>Superlattices and Microstructures, 2019, 130, 241-248.                                                        | 1.4 | 13        |
| 16 | Half panda waveguide structure in the generation of four-wave mixing. Optik, 2019, 183, 999-1007.                                                                                                                | 1.4 | 1         |
| 17 | Preference learning for eco-friendly hotels recommendation: AÂmulti-criteria collaborative filtering approach. Journal of Cleaner Production, 2019, 215, 767-783.                                                | 4.6 | 98        |
| 18 | An analytical method for measuring the Parkinson's disease progression: A case on a Parkinson's telemonitoring dataset. Measurement: Journal of the International Measurement Confederation, 2019, 136, 545-557. | 2.5 | 39        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. Journal of Infection and Public Health, 2019, 12, 13-20.                                                                                           | 1.9 | 85        |
| 20 | Implementing the Equilibrium of Probabilities to Measure Critical Gap at Priority Junctions. Journal of Testing and Evaluation, 2019, 47, 1062-1074.                                                                                             | 0.4 | 3         |
| 21 | Travelers decision making using online review in social network sites: A case on TripAdvisor. Journal of Computational Science, 2018, 28, 168-179.                                                                                               | 1.5 | 77        |
| 22 | Micro-ring resonator made by ion exchange technique and detecting benzene<br>(C <sub>6</sub> H <sub>6</sub> ), propanol (C <sub>3</sub> H <sub>7</sub> OH) and methane<br>(CH <sub>4</sub> ) as cladding layer. Laser Physics, 2018, 28, 106201. | 0.6 | 1         |
| 23 | Quality factor investigation by using trapezoidal subwavelength grating waveguide micro-ring resonator based on graphene. Results in Physics, 2018, 10, 304-307.                                                                                 | 2.0 | 3         |
| 24 | Soft computing techniques in prediction gas sensor based 2D material. Organic Electronics, 2018, 62, 181-188.                                                                                                                                    | 1.4 | 12        |
| 25 | Brief review of monolayer molybdenum disulfide application in gas sensor. Physica B: Condensed<br>Matter, 2018, 545, 510-518.                                                                                                                    | 1.3 | 49        |
| 26 | Analytical Investigation for MoS <sub>2</sub> Field Effect Transistor-Based Gas Sensor. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 399-404.                                                                                       | 0.1 | 6         |
| 27 | NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methane Decomposition Technique. Telkomnika (Telecommunication Computing Electronics and Control), 2018, 16, 69.                                                          | 0.6 | 1         |
| 28 | Benefits of using carbon nanotubes in fuel cells: a review. International Journal of Energy Research,<br>2017, 41, 92-102.                                                                                                                       | 2.2 | 53        |
| 29 | Graphene-Based Gas Sensor Theoretical Framework. Advances in Computer and Electrical Engineering<br>Book Series, 2017, , 117-149.                                                                                                                | 0.2 | 1         |
| 30 | GAS Sensor Modelling and Simulation. Advances in Computer and Electrical Engineering Book Series, 2017, , 70-116.                                                                                                                                | 0.2 | 1         |
| 31 | Trapezoidal Sub-wavelength Grating Micro-Ring Resonator with High Quality Factor. , 2017, , .                                                                                                                                                    |     | 0         |
| 32 | Optimization of Current-Voltage Characteristics of Graphene-Based Biosensors. Advances in<br>Computer and Electrical Engineering Book Series, 2017, , 244-264.                                                                                   | 0.2 | 0         |
| 33 | Modeling of Sensing Layer of Surface Acoustic-Wave-Based Gas Sensors. Advances in Computer and Electrical Engineering Book Series, 2017, , 224-243.                                                                                              | 0.2 | 0         |
| 34 | Development of Gas Sensor Model for Detection of NO2 Molecules Adsorbed on Defect-Free and<br>Defective Graphene. Advances in Computer and Electrical Engineering Book Series, 2017, , 208-223.                                                  | 0.2 | 0         |
| 35 | Sensor application in Direct Methanol Fuel Cells (DMFCs). Renewable and Sustainable Energy Reviews, 2016, 60, 1125-1139.                                                                                                                         | 8.2 | 26        |
| 36 | Band structures of graphene nanoscrolls and their dispersion relation near the Fermi point. RSC Advances, 2016, 6, 38753-38760.                                                                                                                  | 1.7 | 4         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ISVR modeling of an interferon gamma (IFN-γ) biosensor based on graphene. Analytical Methods, 2016, 8,<br>7217-7224.                                                                           | 1.3 | 8         |
| 38 | Silicene and graphene nano materials in gas sensing mechanism. RSC Advances, 2016, 6, 81647-81653.                                                                                             | 1.7 | 31        |
| 39 | <scp>ANFIS</scp> modeling for bacteria detection based on <scp>GNR</scp> biosensor. Journal of<br>Chemical Technology and Biotechnology, 2016, 91, 1728-1736.                                  | 1.6 | 4         |
| 40 | Analytical investigation of bilayer lipid biosensor based on graphene. Journal of Biomaterials<br>Applications, 2016, 30, 677-685.                                                             | 1.2 | 3         |
| 41 | Analytical investigations of gas-sensor using methane decomposition system. Environmental Earth Sciences, 2016, 75, 1.                                                                         | 1.3 | 1         |
| 42 | Analytical assessment of carbon allotropes for gas sensor applications. Measurement: Journal of the<br>International Measurement Confederation, 2016, 92, 295-302.                             | 2.5 | 11        |
| 43 | Analytical Modeling and Artificial Neural Network (ANN) Simulation of Current-Voltage<br>Characteristics in Graphene Nanoscroll Based Gas Sensors. Plasmonics, 2015, 10, 1713-1722.            | 1.8 | 3         |
| 44 | Analytical model of graphene-based biosensors for bacteria detection. International Journal of<br>Environmental Analytical Chemistry, 2015, , 1-8.                                             | 1.8 | 3         |
| 45 | <i>Escherichia coli</i> bacteria detection by using grapheneâ€based biosensor. IET Nanobiotechnology, 2015, 9, 273-279.                                                                        | 1.9 | 32        |
| 46 | Detection of bilayer lipid with graphene nanoribbon. Electronic Materials Letters, 2015, 11, 806-814.                                                                                          | 1.0 | 1         |
| 47 | An analytical approach to evaluate the performance of graphene and carbon nanotubes for<br>NH <sub>3</sub> gas sensor applications. Beilstein Journal of Nanotechnology, 2014, 5, 726-734.     | 1.5 | 23        |
| 48 | Bilayer Graphene Application on NO <sub>2</sub> Sensor Modelling. Journal of Nanomaterials, 2014, 2014, 1-7.                                                                                   | 1.5 | 12        |
| 49 | Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors, 2014, 14, 5502-5515.                                                                               | 2.1 | 31        |
| 50 | The effect of concentration on gas sensor model based on graphene nanoribbon. Neural Computing and Applications, 2014, 24, 143-146.                                                            | 3.2 | 15        |
| 51 | Gas Concentration Effects on the Sensing Properties of Bilayer Graphene. Plasmonics, 2014, 9, 987-992.                                                                                         | 1.8 | 11        |
| 52 | Analytical prediction of liquid-gated graphene nanoscroll biosensor performance. RSC Advances, 2014, 4, 16153.                                                                                 | 1.7 | 23        |
| 53 | Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique. Nanoscale Research Letters, 2014, 9, 402.                        | 3.1 | 6         |
| 54 | Analytical modeling and simulation of l–V characteristics in carbon nanotube based gas sensors using ANN and SVR methods. Chemometrics and Intelligent Laboratory Systems, 2014, 137, 173-180. | 1.8 | 18        |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An analytical model and ANN simulation for carbon nanotube based ammonium gas sensors. RSC Advances, 2014, 4, 36896-36904.                               | 1.7 | 11        |
| 56 | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications. Nanoscale Research Letters, 2013, 8, 55. | 3.1 | 23        |
| 57 | Monolayer Graphene Based CO <sub>2</sub> Gas Sensor Analytical Model. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1301-1304.         | 0.4 | 17        |
| 58 | The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance. Journal of Nanomaterials, 2013, 2013, 1-8.                     | 1.5 | 2         |
| 59 | Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors. Journal of Nanomaterials, 2013, 2013, 1-5.                                | 1.5 | 2         |
| 60 | Gas Concentration Effect on Channel Capacitance in Graphene Based Sensors. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2449-2452.    | 0.4 | 10        |
| 61 | Analytical Modeling of Bilayer Graphene Based Biosensor. Journal of Biosensors & Bioelectronics, 2013, 04, .                                             | 0.4 | 3         |
| 62 | Control and designing observer for active suspension system by using linear quadratic regulator. , 2012, , .                                             |     | 0         |
| 63 | Analytical Modeling of Graphene-Based DNA Sensor. Science of Advanced Materials, 2012, 4, 1142-1147.                                                     | 0.1 | 22        |
| 64 | Observer design for active suspension system using sliding mode control. , 2010, , .                                                                     |     | 12        |