Ulrike Werner-Zwanziger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6337446/publications.pdf

Version: 2024-02-01

414414 471509 42 1,058 17 32 citations h-index g-index papers 43 43 43 1389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control of Ultrasmall Sub-10 nm Ligand-Functionalized Fluorescent Core–Shell Silica Nanoparticle Growth in Water. Chemistry of Materials, 2015, 27, 4119-4133.	6.7	107
2	Zero Thermal Expansion in ZrMgMo ₃ O ₁₂ : NMR Crystallography Reveals Origins of Thermoelastic Properties. Chemistry of Materials, 2015, 27, 2633-2646.	6.7	90
3	Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers. Journal of Materials Chemistry A, 2013, 1, 1108-1116.	10.3	84
4	Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles. Chemistry of Materials, 2013, 25, 677-691.	6.7	82
5	Hybrid composite polymer electrolytes: ionic liquids as a magic bullet for the poly(ethylene) Tj ETQq1 1 0.784314	rgBT/Ove	rlock 10 Tf S
6	A Redoxâ€Confused Bismuth(I/III) Triamide with a Tâ€Shaped Planar Ground State. Angewandte Chemie - International Edition, 2019, 58, 7850-7855.	13.8	68
7	Thermal maturity of type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR. Solid State Nuclear Magnetic Resonance, 2005, 27, 140-148.	2.3	56
8	Induced Microphase Separation in Hybrid Composite Polymer Electrolytes Based on Poly(acrylonitrileâ€∢i>rà€butadienes) and Ionic Liquids. Macromolecular Chemistry and Physics, 2016, 217, 794-803.	2.2	56
9	Periodicity in Structure, Bonding, and Reactivity for pâ€Block Complexes of a Geometry Constraining Triamide Ligand. Chemistry - A European Journal, 2019, 25, 16414-16424.	3.3	41
10	Self-Assembled Gyroidal Mesoporous Polymer-Derived High Temperature Ceramic Monoliths. Chemistry of Materials, 2016, 28, 2131-2137.	6.7	29
11	A New Solid-State Proton Conductor: The Salt Hydrate Based on Imidazolium and 12-Tungstophosphate. Journal of the American Chemical Society, 2021, 143, 13895-13907.	13.7	28
12	Stimuli-Responsive Shapeshifting Mesoporous Silica Nanoparticles. Nano Letters, 2016, 16, 651-655.	9.1	26
13	Mono―and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bisâ€1,4â€([3]Cumulene)â€ <i>p</i> à€€arboquinoid System. Angewandte Chemie - International Edition, 2018, 52749-754.	713.8	24
14	Composition and Morphology Control in Ordered Mesostructured Highâ€Temperature Ceramics from Block Copolymer Mesophases. Macromolecular Chemistry and Physics, 2007, 208, 2096-2108.	2.2	22
15	A Redoxâ€Confused Bismuth(I/III) Triamide with a Tâ€Shaped Planar Ground State. Angewandte Chemie, 2019, 131, 7932-7937.	2.0	21
16	Thermal Expansion Reduction in Aluminaâ€Toughened Zirconia by Incorporation of Zirconium Tungstate and Aluminum Tungstate. Journal of the American Ceramic Society, 2015, 98, 2858-2865.	3.8	20
17	Preparation, Structural Analysis, and Reactivity Studies of Phosphenium Dications. Organometallics, 2016, 35, 439-449.	2.3	19
18	Composition-structure-properties relationship of strontium borate glasses for medical applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 2344-2354.	4.0	17

#	Article	IF	Citations
19	Correlation of Structure and Photoelastic Response in Tin Phosphate Glass. International Journal of Applied Glass Science, 2011, 2, 282-289.	2.0	15
20	Relating ¹³⁹ La Quadrupolar Coupling Constants to Polyhedral Distortion in Crystalline Structures. Journal of Physical Chemistry C, 2015, 119, 25508-25517.	3.1	15
21	Effect of boron oxide addition on the viscosityâ€ŧemperature behaviour and structure of phosphateâ€based glasses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 764-777.	3.4	15
22	Amorphous Quantum Nanomaterials. Advanced Materials, 2019, 31, 1806993.	21.0	15
23	125Te NMR Probes of Tellurium Oxide Crystals: Shielding-Structure Correlations. Inorganic Chemistry, 2018, 57, 892-898.	4.0	14
24	Lithiumâ€Assisted Proton Conduction at 150 °C in a Microporous Triazineâ€Phenol Polymer. Advanced Materials Interfaces, 2015, 2, 1500301.	3.7	11
25	Monoâ€and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bisâ€1,4â€([3]Cumulene)â€ <i>p</i> pi>â€carboquinoid System. Angewandte Chemie, 2018, 130, 757-762.	2.0	10
26	Structural Differences between the Glass and Crystal Forms of the Transparent Ferroelectric Nanocomposite, LaBGeO ₅ , from Neutron Diffraction and NMR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 20963-20980.	3.1	10
27	Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses. Journal of Biomaterials Applications, 2015, 29, 1203-1217.	2.4	9
28	Relationship between thermal conductivity and structure of nacre from <i>Haliotis fulgens</i> Journal of Materials Research, 2011, 26, 1216-1224.	2.6	8
29	Network Connectivity and Crystallization in the Transparent Ferroelectric Nanocomposite LaBGeO ₅ . Journal of Physical Chemistry C, 2019, 123, 11860-11873.	3.1	8
30	(PNSiMe ₃) ₄ (NMe) ₆ : A Robust Tetravalent Phosphazaâ€adamantane Scaffold for Molecular and Macromolecular Construction**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
31	Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles. Journal of Sol-Gel Science and Technology, 2015, 74, 32-38.	2.4	7
32	Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. Journal of Biomaterials Applications, 2016, 30, 1445-1459.	2.4	7
33	Si(CO) <i>_y</i> Negative Electrodes for Li-lon Batteries. Chemistry of Materials, 2021, 33, 7386-7395.	6.7	7
34	Heavy Metals Make a Chain: A Catenated Bismuth Compound. Chemistry - A European Journal, 2020, 26, 7711-7719.	3.3	6
35	C–F Bond Activation in the Solid State: Functionalization of Carbon through Reactions of Graphite Fluoride with Amines. Journal of Physical Chemistry C, 2021, 125, 10326-10333.	3.1	6
36	Phase transformations during processing and in vitro degradation of porous calcium polyphosphates. Journal of Materials Science: Materials in Medicine, 2016, 27, 117.	3.6	5

#	Article	IF	CITATIONS
37	Amorphous Quantum Nanomaterials: Amorphous Quantum Nanomaterials (Adv. Mater. 5/2019). Advanced Materials, 2019, 31, 1970034.	21.0	2
38	Cyanographite. Journal of Physical Chemistry C, 2022, 126, 3001-3008.	3.1	2
39	(PNSiMe3)4(NMe)6: A Robust Tetravalent Phosphazaâ€adamantane Scaffold for Molecular and Macromolecular Construction. Angewandte Chemie, 0, , .	2.0	2
40	Bitumen on Water: Charred Hay as a PFD (Petroleum Flotation Device). Journal of Marine Science and Engineering, 2015, 3, 1244-1259.	2.6	0
41	High Borate Networks as a Platform to Modulate Temporal Release of Therapeutic Metal Ions Gallium and Strontium. Biomedical Glasses, 2017, 3, .	2.4	O
42	Solidâ€state nuclear magnetic resonance investigation of synthetic phlogopite and lepidolite samples. Magnetic Resonance in Chemistry, 2020, 58, 1099-1108.	1.9	O