
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6337195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alcohol intake and risk of pituitary adenoma. Cancer Causes and Control, 2022, 33, 353-361.	1.8	2
2	Connecting nutritional deprivation and pubertal inhibition via GRK2-mediated repression of kisspeptin actions in GnRH neurons. Metabolism: Clinical and Experimental, 2022, 129, 155141.	3.4	5
3	Trafficking-defective mutant PROKR2 cycles between endoplasmic reticulum and Golgi to attenuate endoplasmic reticulum stress. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
4	Clinical Biology of the Pituitary Adenoma. Endocrine Reviews, 2022, 43, 1003-1037.	20.1	81
5	Deletion of Gl̂ \pm q/11 or Gl̂ \pm s Proteins in Gonadotropes Differentially Affects Gonadotropin Production and Secretion in Mice. Endocrinology, 2022, 163, .	2.8	5
6	Oral Contraceptive and Menopausal Hormone Therapy Use and Risk of Pituitary Adenoma: Cohort and Case-Control Analyses. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1402-e1412.	3.6	3
7	Functional Rescue of Inactivating Mutations of the Human Neurokinin 3 Receptor Using Pharmacological Chaperones. International Journal of Molecular Sciences, 2022, 23, 4587.	4.1	1
8	Quality of life after long-term biochemical control of acromegaly. Pituitary, 2022, 25, 531-539.	2.9	4
9	Sleep Fragmentation and Estradiol Suppression Decrease Fat Oxidation in Premenopausal Women. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3167-e3176.	3.6	4
10	The NETting of pituitary adenoma: a gland illusion. Pituitary, 2022, 25, 349-351.	2.9	12
11	Effects of growth hormone receptor antagonism and somatostatin analog administration on quality of life in acromegaly. Clinical Endocrinology, 2021, 94, 58-65.	2.4	5
12	Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology, 2021, 162, .	2.8	24
13	Postoperative Day 1 Morning Cortisol Value as a Biomarker to Predict Long-term Remission of Cushing Disease. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e94-e102.	3.6	9
14	Plasma androgens and the presence and course of depression in a large cohort of women. Translational Psychiatry, 2021, 11, 124.	4.8	7
15	Pituitary Neoplasm Nomenclature Workshop: Does Adenoma Stand the Test of Time?. Journal of the Endocrine Society, 2021, 5, bvaa205.	0.2	31
16	Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clinical Endocrinology, 2021, 95, 542-555.	2.4	39
17	Characterization of Gonadotroph Pituitary Adenomas Based on the Recent 2017 WHO Pituitary Tumor Classification. Journal of the Endocrine Society, 2021, 5, A640-A641.	0.2	2
18	Pubertal Onset Occurs in Female Mice Lacking Paternally Expressed <i>Dlk1</i> Despite Lower Leptin and Kisspeptin Levels. Journal of the Endocrine Society, 2021, 5, A688-A688.	0.2	0

#	Article	IF	CITATIONS
19	Effect of Experimentally Induced Sleep Fragmentation and Hypoestrogenism on Fasting Nutrient Utilization in Pre-Menopausal Women. Journal of the Endocrine Society, 2021, 5, A774-A774.	0.2	1
20	Pegvisomant as Monotherapy or Combination Therapy in Somatostatin Refractory Acromegaly. Journal of the Endocrine Society, 2021, 5, A523-A524.	0.2	0
21	Mutation of the <i>GnRHR</i> Proximal Promoter AP-1 Element in Mice Results in Suboptimal GnRH Induction of LH and an Abnormal Reproductive Phenotype. Journal of the Endocrine Society, 2021, 5, A545-A546.	0.2	0
22	Sex-specific pubertal and metabolic regulation of Kiss1 neurons via Nhlh2. ELife, 2021, 10, .	6.0	11
23	The oestrous cycle and skeletal muscle atrophy: Investigations in rodent models of muscle loss. Experimental Physiology, 2021, 106, 2472-2488.	2.0	6
24	Body Habitus Across the Lifespan and Risk of Pituitary Adenoma. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1591-1602.	3.6	8
25	Genotype–Phenotype Correlations in Central Precocious Puberty Caused by <i>MKRN3</i> Mutations. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1041-e1050.	3.6	31
26	Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet Diabetes and Endocrinology,the, 2021, 9, 847-875.	11.4	315
27	Environmental Pollution, Climate Change, and a Critical Role for the Endocrinologist. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3381-3384.	3.6	1
28	Short-Acting Testosterone: More Physiologic?. Frontiers in Endocrinology, 2020, 11, 572465.	3.5	10
29	Makorin RING finger protein 3 and central precocious puberty. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 152-159.	1.4	16
30	OR11-05 Clinical Characteristics and Reproductive Hormone Levels in 201 Men With Congenital and 479 Men With Acquired Hypogonadotropic Hypogonadism: A Single-Center Comparative Study. Journal of the Endocrine Society, 2020, 4, .	0.2	0
31	The Peripubertal Decline in Makorin Ring Finger Protein 3 Expression is Independent of Leptin Action. Journal of the Endocrine Society, 2020, 4, bvaa059.	0.2	10
32	Clinical Advances in Sex- and Gender-Informed Medicine to Improve the Health of All. JAMA Internal Medicine, 2020, 180, 574.	5.1	132
33	Our Response to COVID-19 as Endocrinologists and Diabetologists. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1299-1301.	3.6	89
34	Effect of Natesto on Reproductive Hormones, Semen Parameters and Hypogonadal Symptoms: A Single Center, Open Label, Single Arm Trial. Journal of Urology, 2020, 204, 557-563.	0.4	30
35	MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. Journal of Clinical Investigation, 2020, 130, 4486-4500.	8.2	46
36	GENETICS IN ENDOCRINOLOGY: Genetic etiologies of central precocious puberty and the role of imprinted genes. European Journal of Endocrinology, 2020, 183, R107-R117.	3.7	53

#	Article	IF	CITATIONS
37	SUN-085 Clinical and Hormonal Features of 37 Families with Central Precocious Puberty Due to MKRN3 Loss-Of -Function Mutations. Journal of the Endocrine Society, 2020, 4, .	0.2	0
38	SAT-034 The Effect of Natesto on Spermatogenesis, Reproductive Hormones, and Hypogonadal Symptoms. A Phase IV Study. Journal of the Endocrine Society, 2020, 4, .	0.2	1
39	Reply by Authors. Journal of Urology, 2020, 204, 563-563.	0.4	0
40	Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biology, 2019, 17, e3000532.	5.6	42
41	GR and LSD1/KDM1A-Targeted Gene Activation Requires Selective H3K4me2 Demethylation at Enhancers. Cell Reports, 2019, 27, 3522-3532.e3.	6.4	23
42	The Impact of High-Dose Glucocorticoids on the Outcome of Immune-Checkpoint Inhibitor–Related Thyroid Disorders. Cancer Immunology Research, 2019, 7, 1214-1220.	3.4	44
43	Age Induced Nitroso-Redox Imbalance Leads to Subclinical Hypogonadism in Male Mice. Frontiers in Endocrinology, 2019, 10, 190.	3.5	5
44	MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. Journal of the Endocrine Society, 2019, 3, 979-995.	0.2	70
45	DLK1, Notch Signaling and the Timing of Puberty. Seminars in Reproductive Medicine, 2019, 37, 174-181.	1.1	30
46	Evolutionary Conservation of MKRN3 and Other Makorins and Their Roles in Puberty Initiation and Endocrine Functions. Seminars in Reproductive Medicine, 2019, 37, 166-173.	1.1	13
47	GnRH—A Key Regulator of FSH. Endocrinology, 2019, 160, 57-67.	2.8	41
48	Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocrine Reviews, 2019, 40, 17-65.	20.1	349
49	GnRH Transactivates Human AMH Receptor Gene via Egr1 and FOXO1 in Gonadotrope Cells. Neuroendocrinology, 2019, 108, 65-83.	2.5	15
50	SUN-264 Mutations in the Maternally Imprinted Genes, MKRN3 and DLK1, Associated with Central Precocious Puberty. Journal of the Endocrine Society, 2019, 3, .	0.2	0
51	S-Nitrosoglutathione Reductase (GSNOR) Deficiency Results in Secondary Hypogonadism. Journal of Sexual Medicine, 2018, 15, 654-661.	0.6	9
52	Endocrine dysfunction induced by immune checkpoint inhibitors: Practical recommendations for diagnosis and clinical management. Cancer, 2018, 124, 1111-1121.	4.1	72
53	Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Molecular and Cellular Endocrinology, 2018, 463, 131-141.	3.2	153
54	Central Precocious Puberty Caused by a Heterozygous Deletion in the MKRN3 Promoter Region. Neuroendocrinology, 2018, 107, 127-132.	2.5	23

#	Article	IF	CITATIONS
55	Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocrine Reviews, 2018, 39, 424-439.	20.1	166
56	PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. ELife, 2018, 7, .	6.0	64
57	High Frequency of <i>MKRN3</i> Mutations in Male Central Precocious Puberty Previously Classified as Idiopathic. Neuroendocrinology, 2017, 105, 17-25.	2.5	65
58	Paternally Inherited DLK1 Deletion Associated With Familial Central Precocious Puberty. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1557-1567.	3.6	145
59	Clinical Identification of Oncogenic Drivers and Copy-Number Alterations in Pituitary Tumors. Endocrinology, 2017, 158, 2284-2291.	2.8	53
60	Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunology Research, 2017, 5, 1133-1140.	3.4	114
61	Pulsatile GnRH Therapy May Restore Hypothalamus–Pituitary–Testis Axis Function in Patients With Congenital Combined Pituitary Hormone Deficiency: A Prospective, Self-Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2291-2300.	3.6	16
62	Estrogens regulate glycosylation of IgG in women and men. JCI Insight, 2017, 2, e89703.	5.0	108
63	Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget, 2016, 7, 76565-76576.	1.8	100
64	Functional Gonadotroph Adenomas. Neurosurgery, 2016, 79, 823-831.	1.1	29
65	Time Course of Central Precocious Puberty Development Caused by an <i>MKRN3</i> Gene Mutation: A Prismatic Case. Hormone Research in Paediatrics, 2016, 86, 126-130.	1.8	18
66	Pubertal development and regulation. Lancet Diabetes and Endocrinology,the, 2016, 4, 254-264.	11.4	400
67	GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER. Molecular Endocrinology, 2016, 30, 348-360.	3.7	19
68	Computational Analysis of Missense Variants of G Protein-Coupled Receptors Involved in the Neuroendocrine Regulation of Reproduction. Neuroendocrinology, 2016, 103, 230-239.	2.5	16
69	A new pathway in the control of the initiation of puberty: the MKRN3 gene. Journal of Molecular Endocrinology, 2015, 54, R131-R139.	2.5	101
70	The Integrated Hypothalamic Tachykinin-Kisspeptin System as a Central Coordinator for Reproduction. Endocrinology, 2015, 156, 627-637.	2.8	99
71	Systemic High-Dose Corticosteroid Treatment Does Not Improve the Outcome of Ipilimumab-Related Hypophysitis: A Retrospective Cohort Study. Clinical Cancer Research, 2015, 21, 749-755.	7.0	223
72	RF9 Acts as a KISS1R Agonist In Vivo and In Vitro. Endocrinology, 2015, 156, 4639-4648.	2.8	28

#	Article	IF	CITATIONS
73	Substance P Regulates Puberty Onset and Fertility in the Female Mouse. Endocrinology, 2015, 156, 2313-2322.	2.8	52
74	Cushing's disease: towards precision medicine. Cell Research, 2015, 25, 649-650.	12.0	13
75	GnRH Neuron-Specific Ablation of Gα _{q/11} Results in Only Partial Inactivation of the Neuroendocrine-Reproductive Axis in Both Male and Female Mice: <i>In Vivo</i> Evidence for Kiss1r-Coupled Gα _{q/11} -Independent GnRH Secretion. Journal of Neuroscience, 2015, 35, 12903-12916.	3.6	23
76	Editorial: The Rise of the Asterisk: One Step to Facilitate Team Science. Molecular Endocrinology, 2015, 29, 943-945.	3.7	3
77	Understanding reproductive endocrine disorders. Nature Reviews Endocrinology, 2015, 11, 640-641.	9.6	5
78	Corticosteroids and immune checkpoint blockade. Aging, 2015, 7, 521-522.	3.1	26
79	Leptin-Responsive GABAergic Neurons Regulate Fertility through Pathways That Result in Reduced Kisspeptinergic Tone. Journal of Neuroscience, 2014, 34, 6047-6056.	3.6	73
80	Editorial: Advances in Neuroscience: The BRAIN Initiative and Implications for Neuroendocrinology. Molecular Endocrinology, 2014, 28, 1589-1591.	3.7	4
81	Dynamic Kisspeptin Receptor Trafficking Modulates Kisspeptin-Mediated Calcium Signaling. Molecular Endocrinology, 2014, 28, 16-27.	3.7	40
82	GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Molecular and Cellular Endocrinology, 2014, 385, 28-35.	3.2	155
83	Role of gonadotropin-releasing hormone receptor mutations in patients with a wide spectrum of pubertal delay. Fertility and Sterility, 2014, 102, 838-846.e2.	1.0	47
84	Central Precocious Puberty That Appears to Be Sporadic Caused by Paternally Inherited Mutations in the Imprinted Gene Makorin Ring Finger 3. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1097-E1103.	3.6	126
85	<i>TACR3</i> mutations disrupt NK3R function through distinct mechanisms in GnRHâ€deficient patients. FASEB Journal, 2014, 28, 1924-1937.	0.5	10
86	LSD2/KDM1B and Its Cofactor NPAC/GLYR1 Endow a Structural and Molecular Model for Regulation of H3K4 Demethylation. Molecular Cell, 2013, 49, 558-570.	9.7	81
87	A mathematical model of pulse-coded hormone signal responses in pituitary gonadotroph cells. Mathematical Biosciences, 2013, 246, 38-46.	1.9	11
88	Central Precocious Puberty Caused by Mutations in the Imprinted Gene <i>MKRN3</i> . New England Journal of Medicine, 2013, 368, 2467-2475.	27.0	450
89	GnRH Pulse Frequency-Dependent Stimulation of FSHÎ ² Transcription Is Mediated via Activation of PKA and CREB. Molecular Endocrinology, 2013, 27, 606-618.	3.7	57
90	Metabolic influences on neuroendocrine regulation of reproduction. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 335-341.	2.3	64

#	Article	IF	CITATIONS
91	When Genetic Load Does Not Correlate with Phenotypic Spectrum: Lessons from the GnRH Receptor (<i>GNRHR</i>). Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1798-E1807.	3.6	43
92	Evidence of the Importance of the First Intracellular Loop of Prokineticin Receptor 2 in Receptor Function. Molecular Endocrinology, 2012, 26, 1417-1427.	3.7	34
93	GnRH-Deficient Phenotypes in Humans and Mice With Heterozygous Variants in KISS1/Kiss1. Obstetrical and Gynecological Survey, 2012, 67, 546-547.	0.4	0
94	Hyperprolactinemia and infertility: new insights. Journal of Clinical Investigation, 2012, 122, 3467-3468.	8.2	44
95	Tet3 CXXC Domain and Dioxygenase Activity Cooperatively Regulate Key Genes for Xenopus Eye and Neural Development. Cell, 2012, 151, 1200-1213.	28.9	227
96	Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma. Cell, 2012, 150, 1135-1146.	28.9	688
97	Increased Neurokinin B (Tac2) Expression in the Mouse Arcuate Nucleus Is an Early Marker of Pubertal Onset with Differential Sensitivity to Sex Steroid-Negative Feedback than Kiss1. Endocrinology, 2012, 153, 4883-4893.	2.8	80
98	Mutational analysis of TAC3 and TACR3 genes in patients with idiopathic central pubertal disorders. Arquivos Brasileiros De Endocrinologia E Metabologia, 2012, 56, 646-652.	1.3	46
99	G protein-coupled receptors involved in GnRH regulation: Molecular insights from human disease. Molecular and Cellular Endocrinology, 2011, 346, 91-101.	3.2	41
100	The Role of the Prokineticin 2 Pathway in Human Reproduction: Evidence from the Study of Human and Murine Gene Mutations. Endocrine Reviews, 2011, 32, 225-246.	20.1	95
101	GnRH-Deficient Phenotypes in Humans and Mice with Heterozygous Variants in <i>KISS1</i> / <i>Kiss1</i> . Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1771-E1781.	3.6	59
102	Lying Low. New England Journal of Medicine, 2011, 364, 871-875.	27.0	5
103	Lying Low. New England Journal of Medicine, 2011, 364, e10.	27.0	1
104	Reproductive Hormone-Dependent and -Independent Contributions to Developmental Changes in Kisspeptin in GnRH-Deficient Hypogonadal Mice. PLoS ONE, 2010, 5, e11911.	2.5	68
105	TAC3/TACR3 Mutations Reveal Preferential Activation of Gonadotropin-Releasing Hormone Release by Neurokinin B in Neonatal Life Followed by Reversal in Adulthood. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2857-2867.	3.6	250
106	Stalking the Diagnosis. New England Journal of Medicine, 2010, 362, 834-839.	27.0	8
107	Deciphering Genetic Disease in the Genomic Era: The Model of GnRH Deficiency. Science Translational Medicine, 2010, 2, 32rv2.	12.4	48
108	A High-Throughput Small-Molecule Ligand Screen Targeted to Agonists and Antagonists of the G-Protein-Coupled Receptor GPR54. Journal of Biomolecular Screening, 2010, 15, 508-517.	2.6	23

#	Article	IF	CITATIONS
109	Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors. Molecular and Cellular Biology, 2010, 30, 1028-1040.	2.3	64
110	The Role of Prokineticins in the Pathogenesis of Hypogonadotropic Hypogonadism. Neuroendocrinology, 2010, 91, 283-290.	2.5	28
111	Human GnRH Deficiency: A Unique Disease Model to Unravel the Ontogeny of GnRH Neurons. Neuroendocrinology, 2010, 92, 81-99.	2.5	87
112	Cushing's Disease and Idiopathic Intracranial Hypertension: Case Report and Review of Underlying Pathophysiological Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4850-4854.	3.6	27
113	Lymphocytic hypophysitis with diabetes insipidus in a young man. Nature Reviews Endocrinology, 2010, 6, 464-470.	9.6	16
114	Human LSD2/KDM1b/AOF1 Regulates Gene Transcription by Modulating Intragenic H3K4me2 Methylation. Molecular Cell, 2010, 39, 222-233.	9.7	209
115	Impaired Fibroblast Growth Factor Receptor 1 Signaling as a Cause of Normosmic Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4380-4390.	3.6	82
116	The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nature Reviews Endocrinology, 2009, 5, 569-576.	9.6	275
117	The biology of gonadotroph regulation. Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16, 321-327.	2.3	73
118	A <i>GPR54</i> -Activating Mutation in a Patient with Central Precocious Puberty. New England Journal of Medicine, 2008, 358, 709-715.	27.0	507
119	Genetic Labeling: New Approaches to Creating a Gonadotroph "ID― Endocrinology, 2008, 149, 2699-2700.	2.8	0
120	A Composite Element that Binds Basic Helix Loop Helix and Basic Leucine Zipper Transcription Factors Is Important for Gonadotropin-Releasing Hormone Regulation of the Follicle-Stimulating Hormone β Gene. Molecular Endocrinology, 2008, 22, 1908-1923.	3.7	41
121	Mutations in the Human Gonadotropin-Releasing Hormone Receptor: Insights into Receptor Biology and Function. Seminars in Reproductive Medicine, 2007, 25, 368-378.	1.1	55
122	Pubertal Impairment in Nhlh2 Null Mice Is Associated with Hypothalamic and Pituitary Deficiencies. Molecular Endocrinology, 2007, 21, 3013-3027.	3.7	25
123	GPR54 and KiSS-1: Role in the regulation of puberty and reproduction. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 257-263.	5.7	50
124	Synergy between Activin A and Gonadotropin-Releasing Hormone in Transcriptional Activation of the Rat Follicle-Stimulating Hormone-l² Gene. Molecular Endocrinology, 2005, 19, 237-254.	3.7	66
125	Oct-1 and Nuclear Factor Y Bind to the SURG-1 Element to Direct Basal and Gonadotropin-Releasing Hormone (GnRH)-Stimulated Mouse GnRH Receptor Gene Transcription. Molecular Endocrinology, 2005, 19, 148-162.	3.7	29
126	Gonadotropin-Releasing Hormone Pulse Frequency-Dependent Activation of Extracellular Signal-Regulated Kinase Pathways in Perifused LβT2 Cells. Endocrinology, 2005, 146, 5503-5513.	2.8	98

#	Article	IF	CITATIONS
127	A Novel Mouse Model of Hypogonadotrophic Hypogonadism: N-Ethyl-N-Nitrosourea-Induced Gonadotropin-Releasing Hormone Receptor Gene Mutation. Molecular Endocrinology, 2005, 19, 972-981.	3.7	64
128	<i>GNRHR</i> Mutations in a Woman with Idiopathic Hypogonadotropic Hypogonadism Highlight the Differential Sensitivity of Luteinizing Hormone and Follicle-Stimulating Hormone to Gonadotropin-Releasing Hormone. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3189-3198.	3.6	57
129	Regulation of Gonadotropins by Inhibin and Activin. Seminars in Reproductive Medicine, 2004, 22, 253-267.	1.1	128
130	Essential Role of the Homeodomain for Pituitary Homeobox 1 Activation of Mouse Gonadotropin-Releasing Hormone Receptor Gene Expression through Interactions with c-Jun and DNA. Molecular and Cellular Biology, 2004, 24, 6127-6139.	2.3	31
131	The <i>GPR54</i> Gene as a Regulator of Puberty. New England Journal of Medicine, 2003, 349, 1614-1627.	27.0	2,297
132	Four naturally occurring mutations in the human GnRH receptor affect ligand binding and receptor function. Molecular and Cellular Endocrinology, 2003, 205, 51-64.	3.2	50
133	Differential Regulation of Gonadotropin Subunit Gene Promoter Activity by Pulsatile Gonadotropin-Releasing Hormone (GnRH) in Perifused LβT2 Cells: Role of GnRH Receptor Concentration. Endocrinology, 2003, 144, 1802-1811.	2.8	133
134	Regulation of gonadotropin gene expression by Müllerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9348-9353.	7.1	60
135	Two Common Naturally Occurring Mutations in the Human Gonadotropin-Releasing Hormone (GnRH) Receptor Have Differential Effects on Gonadotropin Gene Expression and on GnRH-Mediated Signal Transduction. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 834-843.	3.6	50
136	Direct Binding of AP-1 (Fos/Jun) Proteins to a SMAD Binding Element Facilitates Both Gonadotropin-releasing Hormone (GnRH)- and Activin-mediated Transcriptional Activation of the Mouse GnRH Receptor Gene. Journal of Biological Chemistry, 2002, 277, 37469-37478.	3.4	62
137	Pituitary Homeobox 1 Activates the Rat FSHβ (rFSHβ) Gene through Both Direct and Indirect Interactions with the rFSHβ Gene Promoter. Molecular Endocrinology, 2002, 16, 1840-1852.	3.7	51
138	Case 15-2001. New England Journal of Medicine, 2001, 344, 1536-1542.	27.0	10
139	The Protein Kinase C System Acts through the Early Growth Response Protein 1 to Increase LHÎ ² Gene Expression in Synergy with Steroidogenic Factor-1. Molecular Endocrinology, 1999, 13, 106-116.	3.7	95
140	Sp1 Binds to the Rat Luteinizing Hormone β (LHβ) Gene Promoter and Mediates Gonadotropin-releasing Hormone-stimulated Expression of the LHβ Subunit Gene. Journal of Biological Chemistry, 1998, 273, 12943-12951.	3.4	48
141	Differential Effects of Gonadotropin-Releasing Hormone (GnRH) Pulse Frequency on Gonadotropin Subunit and GnRH Receptor Messenger Ribonucleic Acid Levels in Vitro*. Endocrinology, 1997, 138, 1224-1231.	2.8	189
142	Studies of Gonadotropin-Releasing Hormone (GnRH) Action Using nRH Receptor-Expressing Pituitary Cell Lines*. Endocrine Reviews, 1997, 18, 46-70.	20.1	205
143	Stimulation of Luteinizing Hormone β Gene Promoter Activity by the Orphan Nuclear Receptor, Steroidogenic Factor-1. Journal of Biological Chemistry, 1996, 271, 6645-6650.	3.4	165
144	Chromosomal Localization of the Gonadotropin-Releasing Hormone Receptor Gene to Human Chromosome 4q13.1-q21.1 and Mouse Chromosome 5. Genomics, 1994, 20, 506-508.	2.9	32

#	Article	IF	CITATIONS
145	Isolation and characterization of cDNAs encoding the rat pituitary gonadotropin-releasing hormone receptor. Biochemical and Biophysical Research Communications, 1992, 189, 1645-1652.	2.1	167
146	Case Report: Heterogeneity of Aldolase B in Hereditary Fructose Intolerance. American Journal of the Medical Sciences, 1991, 302, 364-368.	1.1	5
147	Modulation of the secretion of potassium by accompanying anions in humans. Kidney International, 1991, 39, 1206-1212.	5.2	72