Ricardo Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633710/publications.pdf Version: 2024-02-01

RICARDO MOLINA

#	Article	IF	CITATIONS
1	Comparative analysis of the germination of barley seeds subjected to drying, hydrogen peroxide, or oxidative air plasma treatments. Plasma Processes and Polymers, 2022, 19, .	3.0	4
2	Physicochemical surface analysis and germination at different irrigation conditions of DBD plasmaâ€ŧreated wheat seeds. Plasma Processes and Polymers, 2021, 18, .	3.0	35
3	Effect of liquid impregnation on DBD atmospheric pressure plasma treatment of cotton. Cellulose, 2020, 27, 7847-7859.	4.9	10
4	Influence of irrigation conditions in the germination of plasma treated Nasturtium seeds. Scientific Reports, 2018, 8, 16442.	3.3	43
5	Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions. ACS Applied Materials & Interfaces, 2017, 9, 5513-5521.	8.0	31
6	Synthesis of Thermo-Sensitive Hydrogels from Free Radical Copolymerization of NIPAAm with MBA Initiated by Atmospheric Plasma Treatment. Plasma Processes and Polymers, 2016, 13, 752-760.	3.0	20
7	Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review. Environmental Technology Reviews, 2014, 3, 71-91.	4.3	32
8	In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydrate Polymers, 2014, 103, 472-479.	10.2	48
9	UV protective textiles by the deposition of functional ethylcellulose nanoparticles. Cellulose, 2014, 21, 2133-2145.	4.9	16
10	Assessment of a dielectric barrier discharge plasma reactor at atmospheric pressure for the removal of bisphenol A and tributyltin. Environmental Technology (United Kingdom), 2014, 35, 1418-1426.	2.2	14
11	Hydrophilic–oleophobic coatings on cellulosic materials by plasma assisted polymerization in liquid phase and fluorosurfactant complexation. Cellulose, 2014, 21, 729-739.	4.9	16
12	Removal of cyanide from water by means of plasma discharge technology. Water Research, 2013, 47, 1701-1707.	11.3	51
13	Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma. Journal of Hazardous Materials, 2013, 262, 664-673.	12.4	106
14	In Situ Polymerization of Aqueous Solutions of NIPAAm Initiated by Atmospheric Plasma Treatment. Plasma Processes and Polymers, 2013, 10, 506-516.	3.0	24
15	Novel properties of PES fabrics modified by corona discharge and colloidal TiO ₂ nanoparticles. Polymers for Advanced Technologies, 2011, 22, 703-709.	3.2	13
16	Interfacial Processes in Textile Materials: Relevance to Adhesion. Journal of Adhesion Science and Technology, 2010, 24, 7-33.	2.6	14
17	Improved Properties of Oxygen and Argon RF Plasma-Activated Polyester Fabrics Loaded with TiO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2010, 2, 1700-1706.	8.0	45
18	Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. Journal of Materials Science, 2009, 44, 3983-3990.	3.7	85

RICARDO MOLINA

#	Article	IF	CITATIONS
19	Wetting properties of polystyrene/divinylbenzene crosslinked porous polymers obtained using W/O highly concentrated emulsions as templates. Surface and Interface Analysis, 2009, 41, 371-377.	1.8	10
20	Effects of low temperature plasma on wool and wool/nylon blend dyed fabrics. Fibers and Polymers, 2008, 9, 293-300.	2.1	19
21	Study on the influence of scouring on the wettability of keratin fibers before plasma treatment. Fibers and Polymers, 2008, 9, 444-449.	2.1	17
22	Polysiloxane Softener Coatings on Plasma-Treated Wool: Study of the Surface Interactions. Macromolecular Materials and Engineering, 2007, 292, 817-824.	3.6	18
23	Role of the Active Species of Plasmas Involved in the Modification of Textile Materials. Plasma Processes and Polymers, 2007, 4, 445-454.	3.0	47
24	Effect of low-temperature plasma and chitosan treatment on wool dyeing with Acid Red 27. Journal of Applied Polymer Science, 2005, 97, 2204-2214.	2.6	50
25	Wettability, ageing and recovery process of plasma-treated polyamide 6. Journal of Adhesion Science and Technology, 2004, 18, 1077-1089.	2.6	107
26	Free Radical Formation in Wool Fibers Treated by Low Temperature Plasma. Textile Reseach Journal, 2003, 73, 955-959.	2.2	18
27	Chemical Modifications on Human Hair Studied by Means of Contact Angle Determination. Journal of Colloid and Interface Science, 2001, 237, 40-46.	9.4	57
28	Shrinkage Properties of Peroxide-Enzyme-Biopolymer Treated Wool. Textile Reseach Journal, 2001, 71, 948-953.	2.2	40