
Alexey Nikitin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6336864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New concept for small-scale GTL. Chemical Engineering Journal, 2015, 282, 206-212.	6.6	35
2	Matrix conversion of natural gas to syngas: The main parameters of the process and possible applications. Chemical Engineering Journal, 2019, 377, 120883.	6.6	25
3	Kinetic features and industrial prospects of the selective oxidative cracking of light alkanes. Russian Chemical Reviews, 2017, 86, 47-74.	2.5	18
4	Utilization of renewable sources of biogas for small-scale production of liquid fuels. Catalysis Today, 2021, 379, 23-27.	2.2	18
5	The role of homogeneous steam reforming of acetylene in the partial oxidation of methane to syngas in matrix type converters. Chemical Engineering Science, 2019, 207, 744-751.	1.9	17
6	Prospects of Conversion of Hydrocarbon Gases to Liquid Products Based on Nitrogen-Rich Synthesis Gas (Review). Petroleum Chemistry, 2019, 59, 370-379.	0.4	17
7	Selective oxycracking of associated petroleum gas into energy fuel in the light of new data on self-ignition delays of methane-alkane compositions. Chemical Engineering Journal, 2020, 381, 122706.	6.6	16
8	Experimental studies of natural gas to synthesis gas converters based on permeable cavity matrices. Russian Journal of Applied Chemistry, 2016, 89, 1816-1824.	0.1	14
9	Production of gas mixtures with regulated ratios between ethylene and carbon monoxide by the gas-phase oxidative cracking of light alkanes. Kinetics and Catalysis, 2014, 55, 556-565.	0.3	13
10	Low-temperature autoignition of binary mixtures of methane with C3–C5 alkanes. Combustion, Explosion and Shock Waves, 2016, 52, 386-393.	0.3	11
11	Adjustment of the fuel characteristics of wet and associated petroleum gases by partial oxidation of C2+ hydrocarbons. Petroleum Chemistry, 2017, 57, 236-243.	0.4	11
12	Non-Catalytic Steam Reforming of C1–C4 Hydrocarbons. Petroleum Chemistry, 2021, 61, 762-772.	0.4	11
13	Effect of pressure on the oxidative cracking of C2—C4 alkanes. Russian Chemical Bulletin, 2016, 65, 2405-2410.	0.4	10
14	New Potentialities for Utilization of Associated Petroleum Gases in Power Generation and Chemicals Production. Eurasian Chemico-Technological Journal, 2017, 19, 265.	0.3	9
15	Activation of the radical-promoted conversion of light hydrocarbons by the products of a rich methane flame. Russian Journal of Physical Chemistry B, 2016, 10, 907-911.	0.2	6
16	Experimental Determination of Self-Ignition Delay of Mixtures of Methane with Light Alkanes. Combustion, Explosion and Shock Waves, 2019, 55, 526-533.	0.3	6
17	Comparison of Various Options for Designing the Direct Oxidation of Methane to Methanol. Russian Journal of Applied Chemistry, 2021, 94, 509-517.	0.1	6
18	Physical Methods for Studying Chemical Reactions: New Non-Catalytic Methods for Processing Hydrocarbon Gases. Russian Journal of Physical Chemistry B, 2021, 15, 498-505.	0.2	6

ALEXEY NIKITIN

#	Article	IF	CITATIONS
19	The Fuel of Our Future: Hydrogen or Methane?. Methane, 2022, 1, 96-106.	0.8	6
20	Oxidative conversion of wet and associated gases to fuels for power plants. Journal of Natural Gas Science and Engineering, 2016, 31, 9-14.	2.1	5
21	Production of Ethylene, CO, and Hydrogen by Oxidative Cracking of Oil Refinery Gas Components. Russian Journal of Applied Chemistry, 2018, 91, 2065-2075.	0.1	5
22	Effect of Hydrogen, Carbon Monoxide, Synthesis Gas, and Steam Additives on the Characteristics of Matrix Conversion of Rich Methane–Oxygen Mixtures. Petroleum Chemistry, 2020, 60, 818-826.	0.4	5
23	Analysis of the Fundamental Aspects of Oxidation of Rich Methane Mixtures in Matrix-Type Converters. Russian Journal of Applied Chemistry, 2018, 91, 1500-1512.	0.1	4
24	Equilibrium Composition of Products Formed by Non-catalytic Conversion of Hydrocarbons. Petroleum Chemistry, 0, , .	0.4	4
25	Oxidative Cracking of Oil Refinery Gases. Russian Journal of Applied Chemistry, 2019, 92, 1745-1750.	0.1	3
26	Perspective tendencies in development of small scale processing of gas resources. Pure and Applied Chemistry, 2017, 89, 1033-1047.	0.9	2
27	Thermokinetic oscillations in the partial oxidation of methane. Russian Journal of Physical Chemistry B, 2017, 11, 403-410.	0.2	2
28	EFFECT OF STEAM ADDITION ON THE PROCESS OF MATRIX CONVERSION OF METHANE TO SYNGAS. Gorenie I Vzryv (Moskva) — Combustion and Explosion, 2018, 11, 18-23.	0.1	2
29	Gas-Phase Oxidation of Natural and Associated Gases. Catalysis in Industry, 2022, 14, 1-10.	0.3	2
30	Effect of Hydrogen Addition on Oxidative Cracking of Ethane. Russian Journal of Applied Chemistry, 2018, 91, 1767-1772.	0.1	1
31	Numerical solution of the problem of surface combustion on flat porous matrix. AIP Conference Proceedings, 2018, , .	0.3	1
32	Computer modeling of self-ignition delays of methane-alkane mixtures. Journal of Physics: Conference Series, 2018, 1141, 012153.	0.3	1
33	Membrane Absorption of Ethylene from a Mixture with Ethane Using MDK-3 Composite Membranes. Russian Journal of Applied Chemistry, 2019, 92, 1826-1834.	0.1	1
34	Processing of natural and casing-head gases by the gas-phase oxidation. Kataliz V Promyshlennosti, 2021, 21, 227-237.	0.2	1
35	Production of Hydrogen from Propane–Butane Mixture in a Combined Process of Matrix and Steam Conversion. Russian Journal of Applied Chemistry, 2021, 94, 927-933.	0.1	1
36	Effect of Hydrogen and Carbon Monoxide Additions on Partial Oxidation of Methane at Elevated Pressures. Russian Journal of Applied Chemistry, 2019, 92, 1726-1733.	0.1	0

#	Article	IF	CITATIONS
37	Oxidative Cracking of Propane in the Presence of Hydrogen. Russian Journal of Applied Chemistry, 2021, 94, 787-792.	0.1	0