
Giorgia Purcaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6336661/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Deeper investigation of oxygen-containing compounds in oleaginous feedstock (animal fat) by preparative column chromatography and comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry. Talanta, 2022, 238, 123019.	5.5	2
2	Sub-ambient temperature sampling of fish volatiles using vacuum-assisted headspace solid phase microextraction: Theoretical considerations and proof of concept. Analytica Chimica Acta, 2022, 1192, 339365.	5.4	9
3	The diagnostic purpose of odorant patterns for clinical applications using GC × GC. Comprehensive Analytical Chemistry, 2022, , .	1.3	1
4	Investigation of the Volatile Profile of Red Jujube by Using GC-IMS, Multivariate Data Analysis, and Descriptive Sensory Analysis. Foods, 2022, 11, 421.	4.3	7
5	Rapid and sensitive quantitation of DDMP (2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one) in baked red jujubes by HS-SPME-GC-MS/MS. Food Control, 2022, 135, 108820.	5.5	7
6	Sample preparation strategies for comprehensive volatile fingerprinting. Comprehensive Analytical Chemistry, 2022, , 155-184.	1.3	4
7	Exploring multiple-cumulative trapping solid-phase microextraction coupled to gas chromatography–mass spectrometry for quality and authenticity assessment of olive oil. Food Chemistry, 2022, 383, 132438.	8.2	16
8	Quantification and characterization of mineral oil in fish feed by liquid chromatography-gas chromatography-flame ionization detector and liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer/flame ionization detector. Journal of Chromatography A, 2022, 1677, 463208.	3.7	12
9	Evolution of hyphenated techniques for mineral oil analysis in food. Journal of Separation Science, 2021, 44, 464-482.	2.5	12
10	Advanced Analytical Techniques in Food Analysis. Journal of AOAC INTERNATIONAL, 2021, 104, 251-252.	1.5	0
11	Microwave-Assisted Saponification Method Followed by Solid-Phase Extraction for the Characterization of Sterols and Dialkyl Ketones in Fats. Foods, 2021, 10, 445.	4.3	4
12	A Review on the Occurrence and Analytical Determination of PAHs in Olive Oils. Foods, 2021, 10, 324.	4.3	22
13	Shelf-Life Evolution of the Fatty Acid Fingerprint in High-Quality Hazelnuts (Corylus avellana L.) Harvested in Different Geographical Regions. Foods, 2021, 10, 685.	4.3	10
14	Mineral oil saturated and aromatic hydrocarbons quantification: Mono- and two-dimensional approaches. Journal of Chromatography A, 2021, 1643, 462044.	3.7	12
15	Investigating Bacterial Volatilome for the Classification and Identification of Mycobacterial Species by HS-SPME-GC-MS and Machine Learning. Molecules, 2021, 26, 4600.	3.8	6
16	Mineral oil risk assessment: Knowledge gaps and roadmap. Outcome of a multi-stakeholders workshop. Trends in Food Science and Technology, 2021, 113, 151-166.	15.1	18
17	Volatile Profile Characterization of Winter Jujube from Different Regions via HS-SPME-GC/MS and GC-IMS. Journal of Food Quality, 2021, 2021, 1-15.	2.6	5
18	Exploring 20 eV electron impact ionization in gas chromatography-tandem mass spectrometry for the determination of estrogenic compounds. Journal of Chromatography A, 2021, 1652, 462359.	3.7	9

#	Article	IF	CITATIONS
19	Production of rainbow trout (Oncorhynchus mykiss) using black soldier fly (Hermetia illucens) prepupae-based formulations with differentiated fatty acid profiles. Science of the Total Environment, 2021, 794, 148647.	8.0	13
20	Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles. Aquaculture, 2021, 545, 737193.	3.5	6
21	Impact of Citrus Pulp or Inulin on Intestinal Microbiota and Metabolites, Barrier, and Immune Function of Weaned Piglets. Frontiers in Nutrition, 2021, 8, 650211.	3.7	8
22	A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Analytica Chimica Acta, 2020, 1103, 106-114.	5.4	33
23	Exploring multiple umulative trapping solidâ€phase microextraction for olive oil aroma profiling. Journal of Separation Science, 2020, 43, 1934-1941.	2.5	12
24	Classical and comprehensive 2D LC-GC. , 2020, , 227-275.		2
25	Enhancement of volatile profiling using multiple-cumulative trapping solid-phase microextraction. Consideration on sample volume. Analytica Chimica Acta, 2020, 1122, 89-96.	5.4	11
26	Development And Validation Of A Method For Determining Estrogenic Compounds In Surface Water At The Ultra-Trace Level Required By The EU Water Framework Directive Watch List. Journal of Chromatography A, 2020, 1624, 461242.	3.7	12
27	Fatty Acid Methyl Ester (FAME) Profiling Identifies Carbapenemase-Producing Klebsiella pneumoniae Belonging to Clonal Complex 258. Separations, 2019, 6, 32.	2.4	3
28	Evaluation of different adsorbent materials for the untargeted and targeted bacterial VOC analysis using GC×GC-MS. Analytica Chimica Acta, 2019, 1066, 146-153.	5.4	30
29	Breath metabolome of mice infected with Pseudomonas aeruginosa. Metabolomics, 2019, 15, 10.	3.0	20
30	Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques. Journal of Breath Research, 2019, 13, 016005.	3.0	53
31	SPME-GC×GC-TOF MS fingerprint of virally-infected cell culture: Sample preparation optimization and data processing evaluation. Analytica Chimica Acta, 2018, 1027, 158-167.	5.4	32
32	Volatile fingerprinting of human respiratory viruses from cell culture. Journal of Breath Research, 2018, 12, 026015.	3.0	40
33	Investigation of mycobacteria fatty acid profile using different ionization energies in GC–MS. Analytical and Bioanalytical Chemistry, 2018, 410, 7987-7996.	3.7	21
34	Volatile fingerprinting of <i>Pseudomonas aeruginosa</i> and respiratory syncytial virus infection in an <i>in vitro</i> cystic fibrosis co-infection model. Journal of Breath Research, 2018, 12, 046001.	3.0	15
35	In-pipette solid-phase extraction prior to flow-modulation comprehensive two-dimensional gas chromatography with dual detection for the determination of minor components in vegetable oils. Talanta, 2017, 165, 598-603.	5.5	3
36	Miniaturization of the QuEChERS Method in the Fast Gas Chromatography-Tandem Mass Spectrometry Analysis of Pesticide Residues in Vegetables. Food Analytical Methods, 2017, 10, 2636-2645.	2.6	12

GIORGIA PURCARO

#	Article	IF	CITATIONS
37	Comprehensive Gas Chromatography Methodologies for the Analysis of Lipids. , 2017, , 407-444.		5
38	Analysis of lipid profile in lipid storage myopathy. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1029-1030, 157-168.	2.3	6
39	Determination of hydrocarbon contamination in foods. A review. Analytical Methods, 2016, 8, 5755-5772.	2.7	35
40	Reuse of Dairy Product: Evaluation of the Lipid Profile Evolution During and After Their Shelf-Life. Food Analytical Methods, 2016, 9, 3143-3154.	2.6	11
41	Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects. Science of the Total Environment, 2016, 571, 955-962.	8.0	45
42	Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection. Food Chemistry, 2016, 212, 730-738.	8.2	39
43	Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid–liquid–gas chromatography with dual detection. Journal of Separation Science, 2016, 39, 623-631.	2.5	33
44	Reliability of the ΔECN42 limit and global method for extra virgin olive oil purity assessment using different analytical approaches. Food Chemistry, 2016, 190, 216-225.	8.2	9
45	Nano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry for Free Fatty Acid Elucidation in Mussel. Analytical Chemistry, 2016, 88, 4021-4028.	6.5	60
46	Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)–gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs. Food Chemistry, 2016, 196, 50-57.	8.2	30
47	Impact of comprehensive twoâ€dimensional gas chromatography with mass spectrometry on food analysis. Journal of Separation Science, 2016, 39, 149-161.	2.5	49
48	Solidâ€phase microextraction with gas chromatography and mass spectrometry determination of benzo(a)pyrene in microcrystalline waxes used as food additives. Journal of Separation Science, 2015, 38, 1749-1754.	2.5	7
49	Comparison of different injection modes in edible oil minor components analysis. Journal of Separation Science, 2015, 38, 2278-2285.	2.5	5
50	Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2015, 1402, 102-109.	3.7	18
51	Fingerprinting of vegetable oil minor components by multidimensional comprehensive gas chromatography with dual detection. Analytical and Bioanalytical Chemistry, 2015, 407, 309-319.	3.7	27
52	Determination of phthalate esters in vegetable oils using direct immersion solid-phase microextraction and fast gas chromatography coupled with triple quadrupole mass spectrometry. Analytica Chimica Acta, 2015, 887, 237-244.	5.4	47
53	The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography. TrAC - Trends in Analytical Chemistry, 2015, 71, 74-84.	11.4	25
54	Evaluation of total hydroxytyrosol and tyrosol in extra virgin olive oils. European Journal of Lipid Science and Technology, 2014, 116, 805-811.	1.5	37

GIORGIA PURCARO

#	Article	IF	CITATIONS
55	Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2014, 1334, 101-111.	3.7	89
56	Optimisation of pressurised liquid extraction (PLE) for rapid and efficient extraction of superficial and total mineral oil contamination from dry foods. Food Chemistry, 2014, 157, 470-475.	8.2	28
57	Microestrazione in fase solida (SPME). Food, 2014, , 177-214.	0.0	2
58	Comparison of two different multidimensional liquid–gas chromatography interfaces for determination of mineral oil saturated hydrocarbons in foodstuffs. Analytical and Bioanalytical Chemistry, 2013, 405, 1077-1084.	3.7	24
59	Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil. Journal of Chromatography A, 2013, 1307, 166-171.	3.7	33
60	Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact. Talanta, 2013, 115, 246-252.	5.5	16
61	Sample pre-fractionation of environmental and food samples using LC-GC multidimensional techniques. TrAC - Trends in Analytical Chemistry, 2013, 43, 146-160.	11.4	30
62	Detailed elucidation of hydrocarbon contamination in food products by using solid-phase extraction and comprehensive gas chromatography with dual detection. Analytica Chimica Acta, 2013, 773, 97-104.	5.4	22
63	Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta, 2013, 105, 292-305.	5.5	209
64	A high-sample-throughput LC-GC method for mineral oil determination. Journal of Separation Science, 2013, 36, 3135-3139.	2.5	27
65	Evaluation of comprehensive two-dimensional gas chromatography coupled to rapid scanning quadrupole mass spectrometry for quantitative analysis. Journal of Chromatography A, 2012, 1255, 177-183.	3.7	21
66	Determination of saturated-hydrocarbon contamination in baby foods by using on-line liquid–gas chromatography and off-line liquid chromatography-comprehensive gas chromatography combined with mass spectrometry. Journal of Chromatography A, 2012, 1259, 221-226.	3.7	27
67	Hyphenated liquid chromatography–gas chromatography technique: Recent evolution and applications. Journal of Chromatography A, 2012, 1255, 100-111.	3.7	56
68	Sample Preparation Techniques for the Determination of Some Food Contaminants (Polycyclic) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 22
69	Ultraâ€high performance liquid chromatographic method for the determination of polycyclic aromatic hydrocarbons in a passive environmental sampler. Journal of Separation Science, 2012, 35, 922-928.	2.5	23
70	Rapid and sensitive solid phase extraction-large volume injection-gas chromatography for the analysis of mineral oil saturated and aromatic hydrocarbons in cardboard and dried foods. Journal of Chromatography A, 2012, 1243, 1-5.	3.7	39
71	Modulators for comprehensive two-dimensional gas chromatography. TrAC - Trends in Analytical Chemistry, 2011, 30, 1437-1461.	11.4	115

⁷²A rapid multidimensional liquid–gas chromatography method for the analysis of mineral oil
saturated hydrocarbons in vegetable oils. Journal of Chromatography A, 2011, 1218, 7476-7480.3.742

GIORGIA PURCARO

#	Article	IF	CITATIONS
73	Identification of the Bacterial Cellular Lipid Fraction by Using Fast GC × GC-MS and Innovative MS Libraries. NATO Science for Peace and Security Series A: Chemistry and Biology, 2011, , 231-244.	0.5	1
74	Performance evaluation of a rapidâ€scanning quadrupole mass spectrometer in the comprehensive twoâ€dimensional gas chromatography analysis of pesticides in water. Journal of Separation Science, 2011, 34, 2411-2417.	2.5	35
75	A flexible loop-type flow modulator for comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2011, 1218, 3140-3145.	3.7	35
76	Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive twoâ€dimensional gas chromatography in combination with mass spectrometry. Journal of Separation Science, 2010, 33, 2334-2340.	2.5	38
77	Accurate quadrupole MS peak reconstruction in optimized gasâ€flow comprehensive twoâ€dimensional gas chromatography. Journal of Separation Science, 2010, 33, 2791-2795.	2.5	4
78	Polycyclic aromatic hydrocarbons (PAHs) levels in propolis and propolis-based dietary supplements from the Italian market. Food Chemistry, 2010, 122, 333-338.	8.2	61
79	Optimized use of a 50 μm ID secondary column in comprehensive two-dimensional gas chromatography–mass spectrometry. Journal of Chromatography A, 2010, 1217, 4160-4166.	3.7	28
80	Evaluation of a Rapid-Scanning Quadrupole Mass Spectrometer in an Apolar × Ionic-Liquid Comprehensive Two-Dimensional Gas Chromatography System. Analytical Chemistry, 2010, 82, 8583-8590.	6.5	88
81	Analysis of Fresh and Aged Tea Tree Essential Oils By Using GCxGC-qMS. Journal of Chromatographic Science, 2010, 48, 262-266.	1.4	42
82	Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1096-1103.	2.3	104
83	Characterization of the yerba mate (<i>llex paraguariensis</i>) volatile fraction using solidâ€phase microextractionâ€comprehensive 2â€D GCâ€MS. Journal of Separation Science, 2009, 32, 3755-3763.	2.5	27
84	Enhanced resolution comprehensive two-dimensional gas chromatography applied to the analysis of roasted coffee volatiles. Journal of Chromatography A, 2009, 1216, 7301-7306.	3.7	35
85	Optimized Use of a 50 μm Internal Diameter Secondary Column in a Comprehensive Two-Dimensional Gas Chromatography System. Analytical Chemistry, 2009, 81, 8529-8537.	6.5	17
86	Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Science, 2009, 81, 275-280.	5.5	110
87	HS–SPME–GC applied to rancidity assessment in bakery foods. European Food Research and Technology, 2008, 227, 1-6.	3.3	22
88	Rapid SPE–HPLC determination of the 16 European priority polycyclic aromatic hydrocarbons in olive oils. Journal of Separation Science, 2008, 31, 3936-3944.	2.5	44
89	Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction–comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 2007, 1161, 284-291.	3.7	103
90	Rapid validated method for the analysis of benzo[a]pyrene in vegetable oils by using solid-phase microextraction–gas chromatography–mass spectrometry. Journal of Chromatography A, 2007, 1176, 231-235.	3.7	36

#	Article	IF	CITATIONS
91	Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties. Science of the Total Environment, 2007, 386, 1-8.	8.0	56
92	Polycyclic Aromatic Hydrocarbons in Frying Oils and Snacks. Journal of Food Protection, 2006, 69, 199-204.	1.7	59
93	Polycyclic aromatic hydrocarbons in vegetable oils from canned foods. European Journal of Lipid Science and Technology, 2005, 107, 488-496.	1.5	59