Robert N Young

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6336509/publications.pdf
Version: 2024-02-01

6 E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nature Cell Biology, 2021, 23, 796-807.

7	Development of 2-(5,6,7-Trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide as a Potent, Selective, and Orally Available Inhibitor of Human Androgen Receptor Targeting Its Binding Function-3 for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2021, 64, 14968-14982.	2.9	9
8	Achieving enhanced bone regeneration using monetite granules with bone anabolic drug conjugates (C3 and C6) in rat mandibular defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2670-2680.	1.6	8
9	Improved bone regeneration using bone anabolic drug conjugates (C3 and C6) with deproteinized bovine bone mineral as a carrier in rat mandibular defects. Journal of Periodontology, 2020, 91, 1521-1531.	1.7	1
10	In Vivo Bone Effects of a Novel Bisphosphonateâ€EP4a Conjugate Drug (C3) for Reversing Osteoporotic Bone Loss in an Ovariectomized Rat Model. JBMR Plus, 2019, 3, e10237.	1.3	8
11	A Novel Anabolic Conjugate (C3) in the Matrix of Dicalcium Phosphate Onlay Block Grafts for Achieving Vertical Bone Augmentation: An Experimental Study on Rabbit Calvaria. International Journal of Oral and Maxillofacial Implants, 2019, 34, e51-e63.	0.6	7
12	Targeting therapeutics to bone by conjugation with bisphosphonates. Current Opinion in Pharmacology, 2018, 40, 87-94.	1.7	31
13	A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Scientific Reports, 2018, 8, 11653.	1.6	33

14 Lipophilicity of the Cystic Fibrosis Drug, Ivacaftor (VX-770), and Its Destabilizing Effect on the Major CF-causing Mutation: F508del. Molecular Pharmacology, 2018, 94, 917-925.
19
20

Targeting Binding Function-3 of the Androgen Receptor Blocks Its Co-Chaperone Interactions, Nuclear Translocation, and Activation. Molecular Cancer Therapeutics, 2016, 15, 2936-2945.
1.9

24

In vivo effects of two novel ALN-EP4a conjugate drugs on bone in the ovariectomized rat model for
1.3

8 reversing postmenopausal bone loss. Osteoporosis International, 2016, 27, 797-808.
$1.3 \quad 8$

21 Development of fluorescent peptide substrates and assays for the key autophagy-initiating cysteine protease enzyme, ATG4B. Bioorganic and Medicinal Chemistry, 2015, 23, 3237-3247.
1.4

Determination of the Rat in Vivo Pharmacokinetic Profile of a Bone-Targeting Dual-Action Pro-Drug
1.8 for Treatment of Osteoporosis. Bioconjugate Chemistry, 2015, 26, 1095-1103.

12

23 The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.
3.9

698

Precision autophagy: Will the next wave of selective autophagy markers and specific autophagy
inhibitors feed clinical pipelines?. Autophagy, 2015, 11, 1949-1952.

Novel EP4 Receptor Agonist-Bisphosphonate Conjugate Drug (C1) Promotes Bone Formation and
Improves Vertebral Mechanical Properties in the Ovariectomized Rat Model of Postmenopausal Bone Loss. Journal of Bone and Mineral Research, 2015, 30, 670-680.

26 Development of Fluorescent Substrates and Assays for the Key Autophagy-Related Cysteine Protease
Enzyme, ATG4B. Assay and Drug Development Technologies, 2014, 12, 176-189.
0.6

31
$27 \quad \begin{aligned} & \text { Identification of a Potent Antiandrogen that Targets the BF3 Site of the Androgen Receptor and } \\ & \text { Inhibits Enzalutamide-Resistant Prostate Cancer. Chemistry and Biology, 2014, 21, 1476-1485. }\end{aligned}$
Inhibits Enzalutamide-Resistant Prostate Cancer. Chemistry and Biology, 2014, 21, 1476-1485.
Discovery and optimization of a new class of pyruvate kinase inhibitors as potential therapeutics for 28 the treatment of methicillin-resistant Staphylococcus aureus infections. Bioorganic and Medicinal Chemistry, 2014, 22, 1708-1725.
Targeting the Binding Function $3(\mathrm{BF} 3)$ Site of the Androgen Receptor Through Virtual Screening. 2.
Development of 2-((2-phenoxyethyl) thio)-1 <i>H</i>-benzimidazole Derivatives. Journal of Medicinal
Chemistry, 2013, 56, 1136-1148.

30 Cheminformatics-Driven Discovery of Selective, Nanomolar Inhibitors for Staphylococcal Pyruvate Kinase. ACS Chemical Biology, 2012, 7, 350-359.
1.6

23

Optimization and structureâ€"activity relationships of a series of potent inhibitors of
31 methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as novel antimicrobial agents.
$1.4 \quad 25$
Bioorganic and Medicinal Chemistry, 2012, 20, 7069-7082.
32 Design and synthesis of novel bone-targeting dual-action pro-drugs for the treatment and reversal of osteoporosis. Bioorganic and Medicinal Chemistry, 2012, 20, 2131-2140.
1.4

39

Synthesis of a tritiumâ€labeled photoâ€affinity probe based on an atypical leukotriene biosynthesis
inhibitor. Journal of Labelled Compounds and Radiopharmaceuticals, 2011, 54, 43-50.
$0.5 \quad 6$

Difluoroethylamines as an amide isostere in inhibitors of cathepsin K. Bioorganic and Medicinal
Chemistry Letters, 2011, 21, 920-923.
37
38

Asymmetric [³H]â€labeling using ruthenium catalyzed transfer hydrogenation. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 205-207.

The discovery of MK-0674, an orally bioavailable cathepsin K inhibitor. Bioorganic and Medicinal
1.0

Chemistry Letters, 2010, 20, 887-892.
22

39 The discovery and synthesis of highly potent subtype selective phosphodiesterase 4D inhibitors.
$1.0 \quad 22$
Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5502-5505.

Discovery of MK-0952, a selective PDE4 inhibitor for the treatment of long-term memory loss and mild
cognitive impairment. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6387-6393.
1.0

35

41 Design and synthesis of an all-in-one 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group fo
1.4
photo-affinity labeling. Bioorganic and Medicinal Chemistry, 2009, 17, 5388-5395.

Alkyl-bridged substituted 8-arylquinolines as highly potent PDE IV inhibitors. Bioorganic and
Medicinal Chemistry Letters, 2009, 19, 5266-5269.
$1.0 \quad 2$
The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorganic and Medicinal
Chemistry Letters, 2008, 18, 923-928.
44 Design, synthesis, and biological evaluation of 8-biarylquinolines: A novel class of PDE4 inhibitors.
Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1407-1412.

Substituted 2,2-bisaryl-bicycloheptanes as novel and potent inhibitors of 5-lipoxygenase activating
protein. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2023-2027.
1.0

14

Discovery of a Potent and Selective Prostaglandin D2 Receptor Antagonist, [(3R)-4-(4-Chloro-) Tj ETQq0 00 rgBT /Overlock 10 Tf 5038 Journal of Medicinal Chemistry, 2007, 50, 794-806.

| $47 \quad$In vitro biotransformations of the prostaglandin D2 (DP) antagonist MK-0524 and synthesis of
 metabolites. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 301-304. |
| :--- | :--- |
| $48 \quad$Metabolic activation of indole-containing prostaglandin D2 receptor 1 antagonists: Impacts of
 glutathione trapping and glucuronide conjugation on covalent binding. Bioorganic and Medicinal
 Chemistry Letters, 2007, 17, 3038-3043. |
| $49 \quad$L-454,560, a potent and selective PDE4 inhibitor with in vivo efficacy in animal models of asthma and
 cognition. Biochemical Pharmacology, 2007, 73, 1971-1981. |
| 2.0 |

50 The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 2007, 313, 2969-2979.
1.2

69
52

Identification of an indole series of prostaglandin D2 receptor antagonists. Bioorganic and Medicinal
Chemistry Letters, 2006, 16, 3043-3048.
1.0

20

Lack of Clinical Efficacy of a Phosphodiesterase-4 Inhibitor for Treatment of Heaves in Horses. Journal of Veterinary Internal Medicine, 2006, 20, 175.
55 Discovery and Synthesis of a Potent, Selective and Orally Bioavailable EP4 Receptor Agonist.
Heterocycles, 2004, 64, 437.

Substituted 2-Pyridinemethanol derivatives as potent and selective phosphodiesterase-4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1923-1926.

Discovery of a potent and selective agonist of the prostaglandin EP4 receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1129-1132.

Optimization of a Tertiary Alcohol Series of Phosphodiesterase-4 (PDE4) Inhibitors:Â Structureâ^Activity
58 Relationship Related to PDE4 Inhibition and Human Ether-a-go-go Related Gene Potassium Channel
2.9 Binding Affinity. Journal of Medicinal Chemistry, 2003, 46, 2413-2426.

59 Effects of selective prostaglandin EP4 receptor antagonist on osteoclast formation and bone resorption in vitro. Bone, 2002, 30, 159-163.

Discovery of L-791,943: A potent, selective, non emetic and orally active phosphodiesterase-4 inhibitor.
Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1457-1461.
1.0

Stereoselective Total Synthesis of $(\hat{A} \pm)$-Thielocin Al| ${ }^{2}$. Journal of the American Chemical Society, 2001, 123,
11381-11387.

5 Discovery of Montelukast: a Once-a-Day Oral Antagonist of Leukotriene D4 for the Treatment of
Chronic Asthma. Progress in Medicinal Chemistry, 2001, 38, 249-277.

Synthesis, characterization, and activity of metabolites derived from the cyclooxygenase-2 inhibitor

Importance of biodiversity to the modern pharmaceutical industry. Pure and Applied Chemistry, 1999,
0.9
Solid phase parallel synthesis of highly substituted thiophene derivatives and identification of novel
phosphodiesterase-4 (PDE-4) inhibitors. Tetrahedron, 1999, 55, 11669-11685.

Prostaglandin E2-bisphosphonate conjugates: potential agents for treatment of osteoporosis.
66 Bioorganic and Medicinal Chemistry, 1999, 7, 901-919.
1.4

86

Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized?. European Journal of
$2.6 \quad 128$
Medicinal Chemistry, 1999, 34, 671-685.

Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530.
1.0

253
Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1255-1260.

2-Pyridinyl-3-(4-methylsulfonyl)phenylpyridines: Selective and orally active cyclooxygenase-2
inhibitors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2777-2782.
$1.0 \quad 129$

Heteroaromatic Dithioacetals Part I: The Preparation of Unsymmetrical Dithioacetals from
Heteroaromatic Thiols. Synlett, 1998, 1998, 289-291.
1.0

6

Substituted (Pyridylmethoxy)naphthalenes as Potent and Orally Active 5-Lipoxygenase Inhibitors: \hat{A}
71 Synthesis, Biological Profile, and Pharmacokinetics of L-739,010. Journal of Medicinal Chemistry, 1997,
2.9

40, 2866-2875.

Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2
inhibitor. British Journal of Pharmacology, 1997, 121, 105-117.

Development of 2,3-dihydro-6-(3-phenoxypropyl)-2-(2-phenylethyl)-5-benzofuranol (L-670,630) as a potent and orally active inhibitor of 5-lipoxygenase. Journal of Medicinal Chemistry, 1992, 35, 1299-1318.

Pharmacology of MK-0591
 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-indol-2-yl]-2,2-dimethyl propanoic acid), a
 potent, orally active leukotriene biosynthesis inhibitor. Canadian Journal of Physiology and
 83 Mouse monoclonal antibody to a latent epitope of leucocyte receptors for leukotriene B4.Immunology, 1992, 76, 122-8.

0.7
$2.0 \quad 4$

84 Pharmacology of the leukotriene antagonist verlukast: The (R)-enantiomer of MK-571. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1847-1854.
0.7

19

Acid (L-660,711) (MK-571), an Antagonist of Leukotriene D4. Heterocycles, 1989, 28, 967.

93	Stereoselective Determination of (122, ̂̂3R and) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50672 Td (î2R, ${ }^{3} \mathrm{~S}$)-4-[3-(4-Acetyl-3-hydroxy		
	Human and Rat Plasma by Normal-Phase High-Performance Liquid Chromatography. Journal of Pharmaceutical Sciences. 1987. 76. 169-173.	1.6	5
94	Design and synthesis of sodium (.beta.R*,.gamma.S*)-4-[[3-(4-acetyl-3-hydroxy-2-propylphenoxy)propyl]thio]-.gamma.-hydroxy-.beta. a novel, selective, and orally active receptor antagonist of leukotriene D4. Journal of Medicinal Chemistry, 1986, 29, 1573-1576.		
95	Stereoselective synthesis of some acetylenic analogues of leukotrienes A and D. Tetrahedron Letters, 1986, 27, 539-542.	0.7	13

96 Development of enzyme-linked immunosorbent assays for measurement of leukotrienes and
The development of sensitive and specific radioimmunoassays for leukotrienes. Prostaglandins,
Leukotrienes, and Medicine, 1984, 13, 21-25.0.8730.8Preparation and stereochemistry of 8- and 9-hydroxy-2,5-ethano-3-benzazocines. Canadian Journal ofChemistry, 1983, 61, 2177-2182.
99 Studies on the conjugation of leukotriene B4 with proteins for development of a radioimmunoassay
100 Measuring leukotrienes of slow reacting substance of anaphylaxis: development of a specific radioimmunoassay. Journal of Immunology, 1983, 131, 429-33.
99 for leukotriene B4. Prostaglandins, 1983, 26, 605-613.
Studies on the preparation of conjugates of leukotriene C4 with
immunoassay for SRS-A (1). Prostaglandins, 1982, 23, 603-613.1.219
1.2 31
Synthesis and stereochemistry of 11 -substituted 5,6,7,8,9,10-hexahydro-6,9-methanobenzocyclooctenes.1.77Journal of Organic Chemistry, 1982, 47, 4329-4334.
Preparation and analgesic properties of amino acid derivatives of103 Preparation and analgesic properties of amino acid derivatives of (-)-5,9.alpha.-diethyl-2'-hydroxybenzomorphan. Journal of Medicinal Chemistry, 1981, 24, 1297-1299.
5Synthesis of $\hat{1}^{2}$-Trimethylsilyloxythioethers and \hat{I}^{2}-Hydroxythioethers by the Reaction of Epoxides with1.134Aryl- and Alkylthiotrimethylsilanes. Synthetic Communications, 1981, 11, 391-398.
105 The synthesis of leukotrienes. Progress in Lipid Research, 1981, 20, 905-907. 5.3 3

Synthesis of leukotrienes - new synthesis of natural leukotriene A4. Tetrahedron Letters, 1981, 22,

