Woo-Kyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6336473/publications.pdf

Version: 2024-02-01

331670 477307 1,767 31 21 29 citations h-index g-index papers 31 31 31 2525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene-enabled block copolymer lithography transfer to arbitrary substrates. Nano Express, 2021, 2, 014009.	2.4	2
2	Enhanced protonic conductivity and IFET behavior in individual proton-doped electrospun chitosan fibers. Journal of Materials Chemistry C, 2019, 7, 10833-10840.	5.5	6
3	Hydrogenated Graphene: Transferring Electronic Devices with Hydrogenated Graphene (Adv. Mater.) Tj $$ ETQq 1 1	0.784314	f rgBT /Overlo
4	Transferring Electronic Devices with Hydrogenated Graphene. Advanced Materials Interfaces, 2019, 6, 1801974.	3.7	6
5	Hydrogen-assisted graphene transfer: surface engineering for chemical, electronic, and biological applications. , 2018, , .		1
6	Fluorinated Graphene Enables the Growth of Inorganic Thin Films by Chemical Bath Deposition on Otherwise Inert Substrates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 677-683.	8.0	3
7	Nanopatterning of GeTe phase change films via heated-probe lithography. Nanoscale, 2017, 9, 8815-8824.	5.6	23
8	Activation of radical addition to graphene by chemical hydrogenation. RSC Advances, 2016, 6, 93356-93362.	3.6	9
9	The importance of correcting for variable probe–sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film. Analyst, The, 2016, 141, 4848-4854.	3.5	40
10	Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering. Nano Letters, 2016, 16, 1455-1461.	9.1	19
11	Patterning Magnetic Regions in Hydrogenated Graphene Via Eâ€Beam Irradiation. Advanced Materials, 2015, 27, 1774-1778.	21.0	58
12	Chemical Stability of Graphene Fluoride Produced by Exposure to XeF ₂ . Nano Letters, 2013, 13, 4311-4316.	9.1	109
13	Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Research, 2013, 6, 767-774.	10.4	23
14	Nanoscale Reduction of Graphene Fluoride via Thermochemical Nanolithography. ACS Nano, 2013, 7, 6219-6224.	14.6	39
15	High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir, 2012, 28, 7957-7961.	3.5	67
16	Direct-write polymer nanolithography in ultra-high vacuum. Beilstein Journal of Nanotechnology, 2012, 3, 52-56.	2.8	7
17	Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks. Nano Letters, 2011, 11, 5461-5464.	9.1	79
18	Maskless Nanoscale Writing of Nanoparticleâ^Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes. Nano Letters, 2010, 10, 129-133.	9.1	56

#	Article	IF	CITATIONS
19	Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-Based Nanomanufacturing. ACS Nano, 2010, 4, 3338-3344.	14.6	68
20	Scanning Probe Lithography of Polymers: Tailoring Morphology and Functionality at the Nanometer Scale. Scanning, 2008, 30, 172-183.	1.5	32
21	The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter, 2008, 4, 1844.	2.7	30
22	Fabrication of Gold Nanowires by Electric-Field-Induced Scanning Probe Lithography and In Situ Chemical Development. Small, 2007, 3, 249-254.	10.0	20
23	Scaling Behavior of Nanopatterned Polymer Brushes. Small, 2007, 3, 63-66.	10.0	60
24	Weak Polyelectrolyte Brush Arrays Fabricated by Combining Electron-Beam Lithography with Surface-Initiated Photopolymerization. Chemistry of Materials, 2006, 18, 3660-3664.	6.7	51
25	Nanopatterned Polymer Brushes by Combining AFM Anodization Lithography with Ring-Opening Metathesis Polymerization in the Liquid and Vapor Phase. Small, 2006, 2, 848-853.	10.0	47
26	Nanofabrication with biomolecules. Materials Today, 2005, 8, 30-39.	14.2	180
27	Enzymatic Fabrication of DNA Nanostructures:Â Extension of a Self-assembled Oligonucleotide Monolayer on Gold Arrays. Journal of the American Chemical Society, 2005, 127, 14122-14123.	13.7	79
28	Stimulus-Responsive Poly(N-isopropylacrylamide) Brushes and Nanopatterns Prepared by Surface-Initiated Polymerization. Chemistry of Materials, 2004, 16, 3688-3696.	6.7	155
29	Fabrication of Stimulus-Responsive Nanopatterned Polymer Brushes by Scanning-Probe Lithography. Nano Letters, 2004, 4, 373-376.	9.1	184
30	Capture and Release of Proteins on the Nanoscale by Stimuli-Responsive Elastin-Like Polypeptide "Switches― Journal of the American Chemical Society, 2004, 126, 7330-7335.	13.7	160
31	Molecular Recognition-Mediated Fabrication of Protein Nanostructures by Dip-Pen Lithography. Nano Letters, 2002, 2, 1203-1207.	9.1	154