
Yves Le Bissonnais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6336185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 2005, 61, 131-154.	2.2	581
2	Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 2010, 122, 167-177.	1.1	561
3	Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biology and Biochemistry, 2006, 38, 2053-2062.	4.2	260
4	Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 2011, 87, 60-69.	2.2	243
5	Soil Aggregate Stability Improvement with Urban Composts of Different Maturities. Soil Science Society of America Journal, 2007, 71, 413-423.	1.2	204
6	The PESERA coarse scale erosion model for Europe. I. – Model rationale and implementation. European Journal of Soil Science, 2008, 59, 1293-1306.	1.8	188
7	Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology, 2004, 299, 4-14.	2.3	184
8	Incorporating soil surface crusting processes in an expert-based runoff model: Sealing and Transfer by Runoff and Erosion related to Agricultural Management. Catena, 2002, 46, 189-205.	2.2	166
9	Variability of soil surface characteristics influencing runoff and interrill erosion. Catena, 2005, 62, 111-124.	2.2	164
10	Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d'Ivoire. Soil Biology and Biochemistry, 1997, 29, 431-439.	4.2	163
11	Mapping erosion risk for cultivated soil in France. Catena, 2002, 46, 207-220.	2.2	162
12	Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. European Journal of Soil Science, 2005, 56, 225-238.	1.8	141
13	Crusting, Runoff, and Erosion Response to Soil Water Content and Successive Rainfalls. Soil Science Society of America Journal, 1992, 56, 1898-1903.	1.2	140
14	Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil and Tillage Research, 2009, 106, 124-136.	2.6	140
15	Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas,) Tj ETQq1	1 0.78431 1.2	.4.rgBT /Ov
16	Splash distance and size distributions for various soils. Geoderma, 2005, 124, 279-292.	2.3	127
17	Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena, 1995, 25, 33-46.	2.2	126
18	Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 2007, 290, 209-219.	1.8	125

Yves Le Bissonnais

#	Article	IF	CITATIONS
19	Laboratory experimental study of soil crusting: Relation between aggregate breakdown mechanisms and crust stucture. Catena, 1989, 16, 377-392.	2.2	122
20	Runoff Features for Interrill Erosion at Different Rainfall Intensities, Slope Lengths, and Gradients in an Agricultural Loessial Hillslope. Soil Science Society of America Journal, 2003, 67, 844.	1.2	122
21	Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science, 2007, 58, 188-195.	1.8	118
22	Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma, 2001, 101, 15-30.	2.3	116
23	Soil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sediment. Earth Surface Processes and Landforms, 2006, 31, 929-939.	1.2	115
24	Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 2016, 67, 11-21.	1.8	111
25	Crusting, runoff and sheet erosion on silty loamy soils at various scales and upscaling from m2 to small catchments. Soil and Tillage Research, 1998, 46, 69-80.	2.6	110
26	Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: a review. Earth Surface Processes and Landforms, 2011, 36, 3-19.	1.2	103
27	Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil and Tillage Research, 2002, 67, 99-108.	2.6	98
28	Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant and Soil, 2018, 424, 303-317.	1.8	94
29	Seal Formation, Runoff, and Interrill Erosion from Seventeen California Soils. Soil Science Society of America Journal, 1993, 57, 224-229.	1.2	93
30	Importance of surface sealing in the erosion of some soils from a mediterranean climate. Geomorphology, 1998, 24, 79-85.	1.1	86
31	Grass strip effects on runoff and soil loss. Agronomy for Sustainable Development, 2004, 24, 129-136.	0.8	81
32	Splash Projection Distance for Aggregated Soils. Soil Science Society of America Journal, 2005, 69, 30.	1.2	80
33	Erosion and sediment budget across scale: A case study in a catchment of the European loess belt. Journal of Hydrology, 2012, 420-421, 255-263.	2.3	79
34	Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture, Ecosystems and Environment, 2009, 134, 201-210.	2.5	76
35	An automated salt-tracing gauge for flow-velocity measurement. Earth Surface Processes and Landforms, 2005, 30, 833-844.	1.2	69
36	Relative Contribution of Rill/Interrill and Gully/Channel Erosion to Small Reservoir Siltation in Mediterranean Environments. Land Degradation and Development, 2016, 27, 785-797.	1.8	68

#	Article	IF	CITATIONS
37	A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management, 2015, 150, 57-68.	3.8	66
38	Modelling interrill erosion in small cultivated catchments. Hydrological Processes, 2002, 16, 3215-3226.	1.1	65
39	Runoff Features for Interrill Erosion at Different Rainfall Intensities, Slope Lengths, and Gradients in an Agricultural Loessial Hillslope. Soil Science Society of America Journal, 2003, 67, 844-851.	1.2	65
40	Size fractions resulting from an aggregate stability test, interrill detachment and transport. Earth Surface Processes and Landforms, 2004, 29, 1117-1129.	1.2	65
41	The effect of ponding depth on infiltration in a crusted surface depression. Catena, 1998, 32, 87-100.	2.2	62
42	Grassland and crop trends: role of the European Union Common Agricultural Policy and consequences for runoff and soil erosion. Environmental Science and Policy, 2003, 6, 7-16.	2.4	62
43	The implications of spatial variability in surface seal hydraulic resistance for infiltration in a mound and depression microtopography. Catena, 1998, 32, 101-114.	2.2	61
44	Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agriculture, Ecosystems and Environment, 2016, 233, 158-170.	2.5	61
45	Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agriculture, Ecosystems and Environment, 2008, 125, 48-56.	2.5	59
46	A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena, 2010, 82, 159-168.	2.2	59
47	The development of land quality indicators for soil degradation by water erosion. Agriculture, Ecosystems and Environment, 2000, 81, 125-135.	2.5	58
48	Sediment concentration in interrill flow: interactions between soil surface conditions, vegetation and rainfall. Earth Surface Processes and Landforms, 2002, 27, 193-205.	1.2	57
49	Modelling ephemeral gully erosion in small cultivated catchments. Catena, 2003, 50, 489-505.	2.2	56
50	Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia. Catena, 2017, 153, 157-167.	2.2	50
51	Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 2019, 435, 1-14.	1.8	50
52	Fingerprinting sediment sources in the outlet reservoir of a hilly cultivated catchment in Tunisia. Journal of Soils and Sediments, 2013, 13, 801-815.	1.5	49
53	Aggregate stability of a crusted soil: differences between crust and sub rust material, and consequences for interrill erodibility assessment. An example from the <scp>L</scp> oess <scp>P</scp> lateau of <scp>C</scp> hina. European Journal of Soil Science, 2014, 65, 325-335.	1.8	47
54	Interrill erosion in the sloping lands of northern Laos subjected to shifting cultivation. Earth Surface Processes and Landforms, 2007, 32, 415-428.	1.2	45

Yves Le Bissonnais

#	Article	IF	CITATIONS
55	Modelling the impact of land use change and rainfall seasonality on sediment export from an agricultural catchment of the northwestern European loess belt. Agriculture, Ecosystems and Environment, 2010, 138, 83-94.	2.5	45
56	MAPPING LINEAR EROSION FEATURES USING HIGH AND VERY HIGH RESOLUTION SATELLITE IMAGERY. Land Degradation and Development, 2013, 24, 22-32.	1.8	45
5 7	Laboratory Vis–NIR spectroscopy as an alternative method for estimating the soil aggregate stability indexes of Mediterranean soils. Geoderma, 2013, 209-210, 86-97.	2.3	45
58	Modelling the impact of agri-environmental scenarios on runoff in a cultivated catchment (Normandy, France). Catena, 2005, 61, 229-240.	2.2	44
59	Soil resistance to interrill erosion: Model parameterization and sensitivity. Catena, 2009, 77, 274-284.	2.2	44
60	Short-Term Dynamics of Soil Aggregate Stability in the Field. Soil Science Society of America Journal, 2014, 78, 1168-1176.	1.2	40
61	Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. Journal of Environmental Management, 2019, 235, 282-292.	3.8	40
62	Sheet and Rill Erosion. , 2006, , 501-513.		37
63	Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. Journal of Hydrology, 2015, 523, 409-426.	2.3	37
64	LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution. Geomorphology, 2012, 175-176, 25-37.	1.1	36
65	Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria. Journal of Earth System Science, 2013, 122, 1303-1312.	0.6	36
66	Main Issues for Preserving Mediterranean Soil Resources From Water Erosion Under Global Change. Land Degradation and Development, 2018, 29, 789-799.	1.8	36
67	Coupled simulation of surface runoff and soil water flow using multi-objective parameter estimation. Journal of Hydrology, 2011, 403, 141-156.	2.3	33
68	Comportement d'agrégats terreux soumis à l'action de l'eau : analyse des mécanismes de désagrégation. Agronomy for Sustainable Development, 1988, 8, 915-924.	0.8	32
69	Reliability of an expert-based runoff and erosion model: Application of STREAM to different environments. Catena, 2009, 78, 129-141.	2.2	31
70	Contribution of multi-temporal SPOT data to the mapping of a soil erosion index. The case of the loamy plateaux of northern France. Soil and Tillage Research, 1997, 10, 99-110.	0.4	27
71	Topographic dependence of aggregate stability, overland flow and sediment transport. Agronomy for Sustainable Development, 2002, 22, 489-501.	0.8	27
72	MHYDAS-Erosion: a distributed single-storm water erosion model for agricultural catchments. Hydrological Processes, 2011, 25, 1717-1728.	1.1	25

YVES LE BISSONNAIS

#	Article	IF	CITATIONS
73	Effets du travail du sol et de la gestion des résidus sur les propriétés du sol et sur l'érosion hydrique d'un Vertisol Méditerranéen. Canadian Journal of Soil Science, 2011, 91, 627-635.	0.5	24
74	Simulation of medium-term soil redistributions for different land use and landscape design scenarios within a vineyard landscape in Mediterranean France. Geomorphology, 2014, 214, 10-21.	1.1	24
75	Immediate and long-term effect of tannins on the stabilization of soil aggregates. Soil Biology and Biochemistry, 2017, 105, 197-205.	4.2	24
76	Changes in structural stability with soil surface crusting: consequences for erodibility estimation. European Journal of Soil Science, 2007, 58, 1107-1114.	1.8	23
77	Remote-sensing data as an alternative input for the â€~STREAM' runoff model. Catena, 2005, 62, 125-135.	2.2	22
78	Combining field monitoring and aerial imagery to evaluate the role of gully erosion in a Mediterranean catchment (Tunisia). Catena, 2018, 170, 73-83.	2.2	21
79	Soil Surface Structure Effect on Isoproturon and Diflufenican Loss in Runoff. Journal of Environmental Quality, 2001, 30, 2113-2119.	1.0	20
80	Soil cracking effects on hydrological and erosive processes: a study case in Mediterranean cultivated vertisols. Hydrological Processes, 2016, 30, 4154-4167.	1.1	20
81	Stakeholders' perception of the relevance of water and sediment connectivity in water and land management. Land Degradation and Development, 2018, 29, 1833-1844.	1.8	18
82	Dynamic evolution of the unsaturated hydraulic conductivity of a developing crust. Earth Surface Processes and Landforms, 2004, 29, 1131-1142.	1.2	17
83	Improvement of surface flow network prediction for the modeling of erosion processes in agricultural landscapes. Geomorphology, 2013, 183, 120-129.	1.1	17
84	Temporal variability and time compression of sediment yield in small Mediterranean catchments: impacts for land and water management. Soil Use and Management, 2018, 34, 388-403.	2.6	16
85	Designing management options to reduce surface runoff and sediment yield with farmers: An experiment in south-western France. Journal of Environmental Management, 2012, 96, 74-85.	3.8	11
86	Microgeometrical characterisation and percolation threshold evolution of a soil crust under rainfall. Catena, 2005, 62, 173-188.	2.2	10
87	Sensitivity analysis of distributed erosion models: Framework. Water Resources Research, 2010, 46, .	1.7	10
88	A Spatiotemporal Multiscale Analysis of Runoff and Erosion in a Mediterranean Marly Catchment. Vadose Zone Journal, 2017, 16, 1-12.	1.3	10
89	Anthropogenic Reservoirs of Various Sizes Trap Most of the Sediment in the Mediterranean Maghreb Basin. Water (Switzerland), 2018, 10, 927.	1.2	10
90	The effect of four calciumâ€based amendments on soil aggregate stability of two sandy topsoils. Journal of Plant Nutrition and Soil Science, 2019, 182, 159-166.	1.1	10

#	Article	IF	CITATIONS
91	Comparative sensitivity analysis of four distributed erosion models. Water Resources Research, 2011, 47, .	1.7	8
92	Evaluating the Impact of the Spatial Distribution of Land Management Practices on Water Erosion: Case Study of a Mediterranean Catchment. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	7
93	Le Bissonnais, Y. (1996). Aggregate stability and assessment of crustability and erodibility: 1. Theory and methodology. <i>European Journal of Soil Science</i> , 47, 425–437 European Journal of Soil Science, 2016, 67, 2-4.	1.8	6
94	Soil Surface Crusting and Structure Slumping in Europe. , 2006, , 489-500.		5
95	Impact of Global changes on soil vulnerability in the Mediterranean basin. , 2011, , .		3
96	ASSESSMENT OF THE ARTIFICIAL NEURAL NETWORKS TO ‎GEOMORPHIC MODELLING OF SEDIMENT YIELD F0 ‎UNGAUGED CATCHMENTS, ALGERIA. Journal of Urban and Environmental Engineering, 0, , 175-185.	DR _{0.3}	2
97	Pan-European Soil Erodibility Assessment. , 2006, , 685-693.		1