
Hyuk-Jun Noh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633617/publications.pdf Version: 2024-02-01

Ηνιικ-Ιιινι Νομ

#	Article	IF	CITATIONS
1	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
2	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340
3	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 8438-8442.	7.2	196
4	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
5	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
6	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
7	Converting Unstable Imine-Linked Network into Stable Aromatic Benzoxazole-Linked One via Post-oxidative Cyclization. Journal of the American Chemical Society, 2019, 141, 11786-11790.	6.6	100
8	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100
9	Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1805606.	11.1	98
10	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623.	5.8	79
11	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
12	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
13	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
14	Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019, 62, 419-425.	8.2	44
15	Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 2018, 23, 657.	1.7	43
16	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie, 2018, 130, 8574-8578.	1.6	40
17	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	7.2	40
18	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Communications Chemistry, 2020, 3, .	2.0	40

Нүик-Јил Мон

#	Article	IF	CITATIONS
19	Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO ₂ Conversion. Chemistry of Materials, 2021, 33, 8705-8711.	3.2	38
20	Vertical two-dimensional layered fused aromatic ladder structure. Nature Communications, 2020, 11, 2021.	5.8	29
21	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11.1	22
22	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870330.	11.1	21
23	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO ₂ -saturated media for an aqueous Zn–CO ₂ system. Journal of Materials Chemistry A, 2020, 8, 14927-14934.	5.2	16
24	Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17191-17197.	7.2	16
25	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	11.1	16
26	Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. Journal of Materials Research and Technology, 2021, 10, 662-670.	2.6	14
27	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	1.9	13
28	Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today Energy, 2019, 14, 100359.	2.5	13
29	Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Composites Communications, 2021, 27, 100896.	3.3	11
30	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
31	Revealing Isolated Mâ ^{~^} N 3 C 1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 23886-23891.	1.6	9
32	Fused aromatic networks as a new class of gas hydrate inhibitors. Chemical Engineering Journal, 2022, 433, 133691.	6.6	7
33	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
34	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	1.6	6
35	Direct and efficient conversion from low-quality graphite to high-quality graphene nanoplatelets. FlatChem, 2018, 12, 10-16.	2.8	6
36	Edgeâ€NF _{<i>x</i>} (<i>x</i> =1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. Batteries and Supercaps, 2020, 3, 928-935.	2.4	6

Нүик-Јин Noh

#	Article	IF	CITATIONS
37	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
38	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
39	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.	2.3	4
40	Catalyst†and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie, 2021, 133, 17328-17334.	1.6	4
41	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	2.8	4
42	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	2.8	3
43	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. Advanced Materials Interfaces, 2021, 8, 2101373.	1.9	3
44	Neohexene graphitic nanoplatelets for reinforced low-density polyethylene. Journal of Polymer Research, 2022, 29, 1.	1.2	3
45	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater.) Tj ETQq1 1 0.784	43 1141 rgBT	/œverlock 10
46	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie, 2022, 134, .	1.6	1
47	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie, 2022, 134, .	1.6	1
48	Fused Aromatic Networks with the Different Spacial Arrangement of Structural Units. SSRN Electronic Journal, 0, , .	0.4	0
49	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170063.	11.1	0
50	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater.) Tj ETQq0 0 0 rg	BT /Overlc	ock 10 Tf 50 2

51Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & amp;4.001Interfaces, 2022, 14, 14588-14595.0