Alessandro Beghini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood, 2006, 107, 3463-3468.	1.4	338
2	C-kit mutations in core binding factor leukemias. Blood, 2000, 95, 726-728.	1.4	271
3	Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer, 2001, 92, 657-662.	4.1	194
4	KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica, 2004, 89, 920-5.	3.5	126
5	The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene, 2003, 22, 2581-2591.	5.9	76
6	The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leukemia and Lymphoma, 2005, 46, 247-255.	1.3	75
7	In VivoDifferentiation of Mast Cells from Acute Myeloid Leukemia Blasts Carrying a Novel Activating Ligand-Independent C-kit Mutation. Blood Cells, Molecules, and Diseases, 1998, 24, 262-270.	1.4	69
8	Amplification of a novel c-Kit activating mutation Asn822-Lys in the Kasumi-1 cell line: a t(8;21)-Kit mutant model for acute myeloid leukemia. The Hematology Journal, 2002, 3, 157-163.	1.4	62
9	Imatinib mesylate in the treatment of Core Binding Factor leukemias with KIT mutations. Leukemia Research, 2005, 29, 397-400.	0.8	40
10	Trisomy 4 Leading to Duplication of a Mutated KIT Allele in Acute Myeloid Leukemia with Mast Cell Involvement. Cancer Genetics and Cytogenetics, 2000, 119, 26-31.	1.0	39
11	C-Kit point mutations in core binding factor leukemias: correlation with white blood cell count and the white blood cell index. Leukemia, 2003, 17, 471-472.	7.2	35
12	Down-regulation of MicroRNAs 222/221 in Acute Myelogenous Leukemia with Deranged Core-Binding Factor Subunits. Neoplasia, 2010, 12, 866-IN3.	5.3	34
13	An unusual mutation in RECQ4 gene leading to Rothmund–Thomson syndrome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 508, 99-105.	1.0	29
14	RNA processing defects of the helicase geneRECQL4 in a compound heterozygous Rothmund-Thomson patient. American Journal of Medical Genetics Part A, 2003, 120A, 395-399.	2.4	29
15	Distinct expression pattern of microtubule-associated protein/microtubule affinity-regulating kinase 4 in differentiated neurons. Neuroscience, 2006, 143, 83-94.	2.3	29
16	Identification of kitM541L somatic mutation in chronic eosinophilic leukemia, not otherwise specified and its implication in low-dose imatinib response. Oncotarget, 2014, 5, 4665-4670.	1.8	28
17	Regeneration-associated WNT Signaling Is Activated in Long-term Reconstituting AC133bright Acute Myeloid Leukemia Cells. Neoplasia, 2012, 14, 1236-IN45.	5.3	26
18	Old and new prognostic factors in acute myeloid leukemia with deranged coreâ€binding factor beta. American Journal of Hematology, 2013, 88, 594-600.	4.1	24

ALESSANDRO BEGHINI

#	Article	IF	CITATIONS
19	STI 571 inhibition effect on KITAsn822Lys-mediated signal transduction cascade. Experimental Hematology, 2005, 33, 682-688.	0.4	22
20	miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia. Molecular Cancer, 2015, 14, 7.	19.2	19
21	Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers, 2019, 11, 1973.	3.7	15
22	Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia. Scientific Reports, 2016, 6, 37201.	3.3	13
23	Serum Tryptase Levels in AML at Diagnosis: A Multicenter Retrospective Study Blood, 2006, 108, 2358-2358.	1.4	12
24	Identification of oligodendroglioma specific chromosomal copy number changes in the glioblastoma MI-4 cell line by array-CGH and FISH analyses. Cancer Genetics and Cytogenetics, 2005, 161, 140-145.	1.0	10
25	FZD6 triggers Wnt–signalling driven by WNT10B ^{IVS1} expression and highlights new targets in Tâ€cell acute lymphoblastic leukemia. Hematological Oncology, 2021, 39, 364-379.	1.7	8
26	Chronic myelogenous leukemia with acquired c-kit activating mutation and transient bone marrow mastocytosis. The Hematology Journal, 2004, 5, 273-275.	1.4	8
27	Total serum tryptase: A predictive marker for KIT mutation in acute myeloid leukemia. Leukemia Research, 2009, 33, 1282-1284.	0.8	7
28	Successful Treatment With Imatinib in a Patient With Chronic Eosinophilic Leukemia Not Otherwise Specified. Journal of Clinical Oncology, 2014, 32, e37-e39.	1.6	7
29	Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers, 2021, 13, 1837.	3.7	7
30	Prognostic Impact of C-Kit Mutations in Core Binding Factor-Leukemia Blood, 2004, 104, 2013-2013.	1.4	5
31	Molecular analysis of PDGFRA and PDGFRB genes by rapid single-strand conformation polymorphism (SSCP) in patients with core-binding factor leukaemias with KIT or FLT3 mutation. Anticancer Research, 2008, 28, 2745-51.	1.1	5
32	A Mathematical Model for the Validation of Gene Selection Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1385-1392.	3.0	4
33	Prevalence and Prognostic Impact of KIT Mutations in Acute Myeloid Leukaemia with Inv(16). A Retrospective Study Blood, 2007, 110, 3488-3488.	1.4	3
34	Identification of two novel RECQL4 exonic SNPs and genomic characterization of the IVS12 minisatellite. Journal of Human Genetics, 2003, 48, 0107-0109.	2.3	1
35	Targeting WNT10B-Driven Signalling through Induction of FZD6 By Porcupine Inhibition in T Cell Acute Lymphoblastic Leukemia. Blood, 2019, 134, 3956-3956.	1.4	1
36	Reply to letter by Volpi regarding: ?RNA processing defects of the helicase geneRECQL4 in a compound heterozygous Rothmund-Thomson patient?. American Journal of Medical Genetics Part A, 2004, 129A, 103-103.	2.4	0

#	Article	IF	CITATIONS
37	Common Gene Expression Signature of B-Cells of <i>Waldenström</i> Macroglobulinemia (WM) and IgM Monoclonal Gammopathies of Undetermined Significance (<i>IgM MGUS</i>) Compared to Healthy Subjects. Blood, 2021, 138, 4317-4317.	1.4	0
38	Genetic Landscape and Clonal Evolution Patterns of CEBPA-Mutated Acute Myeloid Leukaemia Based on Next-Generation Sequencing: A Retrospective Analysis. Blood, 2021, 138, 2363-2363.	1.4	0
39	Prospective Evaluation of a Continuation Therapy with Midostaurin in Adult Patients with Core-Binding Factor Leukemia and Integrated Genetic Analysis: A Multi Center Phase II Study. Preliminary Results. Blood, 2020, 136, 37-38.	1.4	0
40	Cell Surface Proteins of B Cells and Plasmacells Are Differently Expressed in Waldenström's Macroglobulinemia (WM) Patients Vs. Subjects with Monoclonal Gammopathy of Uncertain Significance (IgMMGUS) Vs. Healthy Donors. Blood, 2020, 136, 41-41.	1.4	0
41	A novel startâ€loss mutation of the <i>SH2B3</i> gene in a family with myeloproliferative neoplasms. Hematological Oncology, 2022, 40, 1109-1112.	1.7	0