Ketan Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335736/publications.pdf

Version: 2024-02-01

		1937685	2053705
5	41	4	5
papers	citations	h-index	g-index
5	5	5	41
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A combined experimental and computational study on the transition of the calcium isopropoxide radical as a candidate for direct laser cooling. Physical Chemistry Chemical Physics, 2022, 24, 8749-8762.	2.8	2
2	Vibronically coupled states: computational considerations and characterisation of vibronic and rovibronic spectroscopic parameters. International Reviews in Physical Chemistry, 2021, 40, 165-298.	2.3	13
3	Electronic spectroscopy of the A1 $\hat{1}_f$ 2A \hat{a} 0 \hat{a} 2 \hat{a} 0 \hat{a} 1 \hat{a} 2A \hat{a} 0 \hat{a} 2 \hat{a} 0°1 \hat{a} 2 \hat{a} 0°2 \hat{a} 0°2 \hat{a} 0°3 \hat{a} 0°3°3 \hat{a} 0°4 \hat{a} 0°	adicals: 3.0	4
4	Rotational and fine structure of open-shell molecules in nearly degenerate electronic states. II. Interpretation of experimentally determined interstate coupling parameters of alkoxy radicals. Journal of Chemical Physics, 2020, 153, 174306.	3.0	4
5	Laser-induced fluorescence and dispersed-fluorescence spectroscopy of the $\tilde{A}f2E\hat{a}^*X\tilde{I}f2A1$ transition of jet-cooled calcium methoxide (CaOCH3) radicals. Journal of Chemical Physics, 2019, 151, 134303.	3.0	18