Pengfei Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6335695/pengfei-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 116
 7,253
 39
 84

 papers
 h-index
 g-index

 120
 8,585
 8.5
 5.99

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
116	Dual-acceptor thermally activated delayed fluorescence emitters: Achieving high efficiency and long lifetime in orange-red OLEDs. <i>Chemical Engineering Journal</i> , 2022 , 434, 134728	14.7	2
115	Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy <i>Biomaterials</i> , 2022 , 284, 121495	15.6	2
114	A ratiometric fluorescent probe for detection of Eglutamyl transpeptidase in blood serum and living cells <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2022 , 278, 121325	4.4	
113	Novel selenium-containing photosensitizers for near-infrared fluorescence imaging-guided photodynamic therapy. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2022 , 112488	6.7	O
112	Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. <i>ACS Applied Materials & Delayed Fluorescent</i> , 13, 4906.	6 ⁹ 4 ⁵ 907	· '\$
111	Water-Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIR-II Photothermal Anti-Bacterial Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 11864-11868	3.6	2
110	Water-Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIR-II Photothermal Anti-Bacterial Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11758-11762	216.4	28
109	Ultrasound-Enhanced Self-Exciting Photodynamic Therapy Based on Hypocrellin B. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 1221-1224	4.5	1
108	Self-assembly of Amphiphilic Porphyrins To Construct Nanoparticles for Highly Efficient Photodynamic Therapy. <i>Chemistry - A European Journal</i> , 2021 , 27, 11195-11204	4.8	2
107	Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. <i>Nanoscale Horizons</i> , 2021 , 6, 177-185	10.8	26
106	Innovative strategies of hydrogen peroxide-involving tumor therapeutics. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4474-4501	7.8	2
105	Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. <i>Chemical Communications</i> , 2021 , 57, 4902-4905	5.8	8
104	Photochemical Synthesis of Nonplanar Small Molecules with Ultrafast Nonradiative Decay for Highly Efficient Phototheranostics. <i>Advanced Materials</i> , 2021 , 33, e2102799	24	2
103	Photodynamic therapy for hypoxic tumors: Advances and perspectives. <i>Coordination Chemistry Reviews</i> , 2021 , 438, 213888	23.2	36
102	Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. <i>ACS Omega</i> , 2021 , 6, 26575-26582	3.9	1
101	Advances and perspectives in organic sonosensitizers for sonodynamic therapy. <i>Coordination Chemistry Reviews</i> , 2021 , 445, 214087	23.2	25
100	High-Efficiency Red-Fluorescent Organic Light-Emitting Diodes with Excellent Color Purity. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1980-1989	3.8	4

(2019-2020)

99	Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma <i>ACS Applied Bio Materials</i> , 2020 , 3, 3817-3826	4.1	6
98	Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. <i>Chemical Engineering Journal</i> , 2020 , 388, 124212	14.7	49
97	Recent advances and prospects of carbon dots in cancer nanotheranostics. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 449-471	7.8	52
96	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. <i>ACS Nano</i> , 2020 , 14, 9917-992	2§ ^{6.7}	48
95	Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. <i>View</i> , 2020 , 1, 20200090	7.8	11
94	A two-photon fluorescent probe for sensitive detection and imaging of Eglutamyl transpeptidase. <i>Chemical Communications</i> , 2020 , 56, 10902-10905	5.8	8
93	Highly Efficient, Red Delayed Fluorescent Emitters with Exothermic Reverse Intersystem Crossing via Hot Excited Triplet States. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20816-20826	3.8	8
92	Near-Infrared Hypocrellin Derivatives for Synergistic Photodynamic and Photothermal Therapy. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 3462-3468	4.5	3
91	Plant-Derived Single-Molecule-Based Nanotheranostics for Photoenhanced Chemotherapy and Ferroptotic-Like Cancer Cell Death <i>ACS Applied Bio Materials</i> , 2019 , 2, 2643-2649	4.1	6
90	Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. <i>Dyes and Pigments</i> , 2019 , 170, 107574	4.6	32
89	Photosensitizers for Photodynamic Therapy. Advanced Healthcare Materials, 2019, 8, e1900132	10.1	324
88	Solution-processed white organic light-emitting diodes with bi-component emitting layer based on symmetry blue spiro-sulfone derivative. <i>Organic Electronics</i> , 2019 , 71, 24-30	3.5	14
87	Biodegradable Natural Product-Based Nanoparticles for Near-Infrared Fluorescence Imaging-Guided Sonodynamic Therapy. <i>ACS Applied Materials & District Mater</i>	9.5	38
86	Pheophytin Derived Near-Infrared-Light Responsive Carbon Dot Assembly as a New Phototheranotic Agent for Bioimaging and Photodynamic Therapy. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2162-2168	4.5	36
85	Substitution Conformation Balances the Oscillator Strength and Singlet I riplet Energy Gap for Highly Efficient DAD Thermally Activated Delayed Fluorescence Emitters. <i>Advanced Optical Materials</i> , 2019 , 7, 1801767	8.1	17
84	Intermolecular Interaction-Induced Thermally Activated Delayed Fluorescence Based on a Thiochromone Derivative. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1888-1893	6.4	18
83	Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions. <i>Nano Research</i> , 2019 , 12, 2576-2583	10	32
82	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15111-15120	16.4	93

81	Angular-Fused Dithianaphthylquinone Derivative: Selective Synthesis, Thermally Activated Delayed Fluorescence Property, and Application in Organic Light-Emitting Diode. <i>Organic Letters</i> , 2019 , 21, 8832	2- 88 36	9
80	Natural-Origin Hypocrellin-HSA Assembly for Highly Efficient NIR Light-Responsive Phototheranostics against Hypoxic Tumors. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 44989-449	988	18
79	Red emissive fluorescent probe for the rapid detection of selenocysteine. <i>Sensors and Actuators B: Chemical</i> , 2018 , 264, 234-239	8.5	12
78	Highly efficient white light-emitting diodes with a bi-component emitting layer based on blue and yellow thermally activated delayed fluorescence emitters. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 295	57 - 295	6 ²⁴
77	A Magnetofluorescent Carbon Dot Assembly as an Acidic H O -Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. <i>Advanced Materials</i> , 2018 , 30, e1706090	24	283
76	PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. <i>Science China Materials</i> , 2018 , 61, 1325-1338	7.1	29
75	Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 302-311	9.3	62
74	Carbon Dots as Multifunctional Phototheranostic Agents for Photoacoustic/Fluorescence Imaging and Photothermal/Photodynamic Synergistic Cancer Therapy. <i>Advanced Therapeutics</i> , 2018 , 1, 1800077	4.9	57
73	Novel spironaphthalenone-based host materials for efficient red phosphorescent and thermally activated delayed fluorescent OLEDs. <i>Organic Electronics</i> , 2018 , 61, 376-382	3.5	11
72	Experimental Evidence for Hot Exciton Thermally Activated Delayed Fluorescence Emitters. <i>Advanced Optical Materials</i> , 2018 , 7, 1801190	8.1	30
71	Interface Exciplex Anchoring the Color Stability of Solution-Processed Thermally Activated Delayed Fluorescent White Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1800978	8.1	23
70	Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. <i>Biomaterials</i> , 2018 , 185, 133-141	15.6	39
69	A colorimetric and ratiometric fluorescent probe for highly selective detection of glutathione in the mitochondria of living cells. <i>Sensors and Actuators B: Chemical</i> , 2018 , 270, 459-465	8.5	33
68	New detection method for nucleoside triphosphates based on carbon dots: The distance-dependent singlet oxygen trapping. <i>Analytica Chimica Acta</i> , 2018 , 1031, 145-151	6.6	6
67	Coumarin/fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 204, 590-597	4.4	15
66	Coumarin-Based Boron Complexes with Aggregation-Induced Emission. <i>Journal of Organic Chemistry</i> , 2017 , 82, 3456-3462	4.2	44
65	Water-Soluble Polythiophene for Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy of Cancer. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 14590-14595	9.5	36
64	Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. <i>Nano Research</i> , 2017 , 10, 3113-3123	10	170

(2016-2017)

63	Biocompatible Iron Phthalocyanine-Albumin Assemblies as Photoacoustic and Thermal Theranostics in Living Mice. <i>ACS Applied Materials & Distributed Ma</i>	9.5	50
62	Dual-Emission Channels for Simultaneous Sensing of Cysteine and Homocysteine in Living Cells. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2098-2103	4.5	18
61	Single Near-Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics. <i>Advanced Science</i> , 2017 , 4, 1700085	13.6	50
60	Self-Assembled Carbon Dot Nanosphere: A Robust, Near-Infrared Light-Responsive, and Vein Injectable Photosensitizer. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601419	10.1	34
59	Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2832-2839	7.3	24
58	Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 160	1437	29
57	Near-Infrared Probe Based on Rhodamine Derivative for Highly Sensitive and Selective Lysosomal pH Tracking. <i>Analytical Chemistry</i> , 2017 , 89, 1922-1929	7.8	105
56	Ethylene glycol-mediated synthetic route for production of luminescent silicon nanorod as photodynamic therapy agent. <i>Science China Materials</i> , 2017 , 60, 881-891	7.1	9
55	Triplet decay-induced negative temperature dependence of the transient photoluminescence decay of thermally activated delayed fluorescence emitter. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12077-12084	7.1	36
54	n-Doping-induced efficient electron-injection for high efficiency inverted organic light-emitting diodes based on thermally activated delayed fluorescence emitter. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8400-8407	7.1	21
53	A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions. <i>Biosensors and Bioelectronics</i> , 2017 , 90, 117-124	11.8	87
52	Surface-enhanced Raman scattering substrate based on cysteamine-modified gold nanoparticle aggregation for highly sensitive pentachlorophenol detection. <i>RSC Advances</i> , 2016 , 6, 85285-85292	3.7	10
51	Highly Efficient Nondoped Organic Light Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter with Quantum-Well Structure. <i>ACS Applied Materials & Delayer</i> (1916), 8, 20955-61	9.5	29
50	A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2283-94	10.1	22
49	A macromolecular cyclometalated gold(iii) amphiphile displays long-lived emissive excited state in water: self-assembly and in vitro photo-toxicity. <i>Chemical Communications</i> , 2016 , 52, 13273-13276	5.8	13
48	Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. <i>Nanoscale</i> , 2016 , 8, 13067-77	7.7	101
47	Graphene quantum dots as efficient, metal-free, visible -light-active photocatalysts. <i>Science China Materials</i> , 2016 , 59, 12-19	7.1	38
46	A ratiometric fluorescent probe for quantification of alkaline phosphatase in living cells. <i>RSC Advances</i> , 2016 , 6, 32046-32051	3.7	29

45	Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. <i>Nanoscale</i> , 2016 , 8, 729-34	7.7	150
44	Highly Conductive, Air-Stable Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes. <i>Advanced Materials</i> , 2016 , 28, 7167-72	24	163
43	Investigation of biological cell@mall molecule interactions with a gold surface plasmon resonance sensor using a laser scanning confocal imaging-surface plasmon resonance system. <i>RSC Advances</i> , 2016 , 6, 65930-65935	3.7	3
42	Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red-Light-Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo. <i>Advanced Healthcare Materials</i> , 2016 , 5, 665-75	10.1	202
41	Keto-benzo[h]-Coumarin-Based Near-Infrared Dyes with Large Stokes Shifts for Bioimaging Applications. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 498-504	4.5	26
40	Deep-red to near-infrared fluorescent dyes: Synthesis, photophysical properties, and application in cell imaging. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2016 , 164, 8-14	4.4	14
39	Deep-Red and Near-Infrared Xanthene Dyes for Rapid Live Cell Imaging. <i>Journal of Organic Chemistry</i> , 2016 , 81, 7393-9	4.2	32
38	Nonvolatile memory devices based on carbon nano-dot doped poly(vinyl alcohol) composites with low operation voltage and high ON/OFF ratio. <i>RSC Advances</i> , 2015 , 5, 26886-26890	3.7	13
37	Multifunctional upconversionfianoparticlesfirismethylpyridylporphyrinffullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. <i>NPG Asia Materials</i> , 2015 , 7, e205-e205	10.3	77
36	Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 17054-60	9.5	352
35	A facile high-speed vibration milling method to mass production of water-dispersible silicon quantum dots for long-term cell imaging. <i>RSC Advances</i> , 2015 , 5, 35291-35296	3.7	11
34	Aminobenzofuran-fused rhodamine dyes with deep-red to near-infrared emission for biological applications. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3170-5	4.2	34
33	Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. <i>ACS Applied Materials & Description of the Communication of th</i>	9.5	38
32	Highly stable organic fluorescent nanorods for living-cell imaging. <i>Nano Research</i> , 2015 , 8, 2380-2389	10	48
31	A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. <i>Chemical Communications</i> , 2015 , 51, 15574-7	5.8	78
30	A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 127-134	7.3	69
29	A selective fluorescent and colorimetric dual-responses chemosensor for streptomycin based on polythiophene derivative. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2015 , 136 Pt B, 871-4	4.4	16
28	Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. <i>Advanced Materials</i> , 2015 , 27, 4169-77	24	619

(2012-2015)

27	of Efficient Orange and Red Phosphorescent Organic Light-Emitting Diodes with Low Roll-Off of Efficiency using a Novel Thermally Activated Delayed Fluorescence Material as Host. <i>Advanced Materials</i> , 2015 , 27, 4041-7	24	111
26	Imaging of nucleolar RNA in living cells using a highly photostable deep-red fluorescent probe. <i>Biosensors and Bioelectronics</i> , 2015 , 68, 189-196	11.8	49
25	Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. <i>Nano Letters</i> , 2014 , 14, 3124-9	11.5	39
24	Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. <i>Nanoscale</i> , 2014 , 6, 255-62	7.7	256
23	Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. <i>ACS Applied Materials & District Research</i> , 19, 21270-8	9.5	131
22	A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. <i>Nature Communications</i> , 2014 , 5, 4596	17.4	946
21	Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs. <i>Advanced Materials</i> , 2014 , 26, 5198-204	24	419
20	Turn-on fluorescence sensor based on the aggregation of pyrazolo[3,4-b]pyridine-based coumarin chromophores induced by Hg2+. <i>Tetrahedron Letters</i> , 2013 , 54, 6447-6449	2	19
19	Early fatigue damage detecting sensors and prospects. <i>Sensors and Actuators A: Physical</i> , 2013 , 198, 46-60	3.9	18
18	Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 391-5	11.8	24
17	Thiol-selective sensor based on intramolecular energy transfer between a bichromophoric system. <i>Tetrahedron</i> , 2013 , 69, 4536-4540	2.4	1
16	Coumarin- and rhodamine-fused deep red fluorescent dyes: synthesis, photophysical properties, and bioimaging in vitro. <i>Journal of Organic Chemistry</i> , 2013 , 78, 6121-30	4.2	99
15	Facile method for modification of the silicon nanowires and its application in fabrication of pH-sensitive chips. <i>ACS Applied Materials & Description of Action and Materials & Description of PH-sensitive chips. ACS Applied Materials & Description and Description and Description of PH-sensitive chips. ACS Applied Materials & Descript</i>	9.5	6
14	Copolythiophene-derived colorimetric and fluorometric sensor for lysophosphatidic acid based on multipoint interactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 2283-8	9.5	38
13	Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6685-94	16.4	96
12	A polythiophene-derived ratiometric fluorescent sensor for highly sensitive determination of carbenicillin in aqueous solution. <i>Chemical Communications</i> , 2012 , 48, 6818-20	5.8	15
11	A chromo- and fluorogenic sensor for probing the cancer biomarker lysophosphatidic acid. <i>Analyst, The,</i> 2012 , 137, 1853-9	5	8
10	A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level. <i>Nano Research</i> , 2012 , 5, 486-493	10	45

9	Ratiometric fluorescence sensor based on a pyrene derivative and quantification detection of heparin in aqueous solution and serum. <i>Analytical Chemistry</i> , 2011 , 83, 6559-64	7.8	116	
8	Reversible fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. <i>Inorganic Chemistry</i> , 2011 , 50, 6543-51	5.1	62	
7	Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nanoparticles supramolecular assembly. <i>Chemical Communications</i> , 2011 , 47, 9888-90	5.8	28	
6	A colorimetric chemosensor for fast detection of thiols based on intramolecular charge transfer. <i>Tetrahedron Letters</i> , 2011 , 52, 5136-5139	2	23	
5	Preparation of highly stable and water-dispersible silicon quantum dots by using an organic peroxide. <i>Chemistry - A European Journal</i> , 2011 , 17, 12872-6	4.8	17	
4	Aggregation-induced emission enhancement materials with large red shifts and their self-assembled crystal microstructures. <i>CrystEngComm</i> , 2011 , 13, 4617	3.3	30	
3	Highly sensitive fluorescent probe for thiols based on combination of PET and ESIPT mechanisms. <i>Sensors and Actuators B: Chemical</i> , 2011 , 156, 332-337	8.5	75	
2	A New Family of Isophorone-Based Dopants for Red Organic Electroluminescent Devices. <i>Chemistry of Materials</i> , 2003 , 15, 1486-1490	9.6	84	
1	Modulating Non-Radiative Deactivation via Acceptor Reconstruction to Expand High-Efficient Red Thermally Activated Delayed Fluorescent Emitters. <i>Advanced Optical Materials</i> ,2102558	8.1	2	