Numan Salah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335634/publications.pdf

Version: 2024-02-01

		109311	114455
149	4,862	35	63
papers	citations	h-index	g-index
149	149	149	4264
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853.	8.6	403
2	High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine, 2011, 6, 863.	6.7	191
3	Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. Journal of Hazardous Materials, 2015, 286, 127-135.	12.4	191
4	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	19.5	189
5	The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Applied Catalysis B: Environmental, 2016, 180, 391-402.	20.2	174
6	Synthesis, Characterization, and Sunlight Mediated Photocatalytic Activity of CuO Coated ZnO for the Removal of Nitrophenols. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8757-8769.	8.0	165
7	Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Advanced Energy Materials, 2021, 11, 2100201.	19.5	156
8	Thermoluminescence of nanocrystalline LiF:Mg, Cu, P. Journal of Luminescence, 2007, 124, 357-364.	3.1	147
9	TL and PL studies on : Dy nanoparticles. Radiation Measurements, 2006, 41, 40-47.	1.4	146
10	K3Na(SO4)2 : Eu nanoparticles for high dose of ionizing radiation. Journal Physics D: Applied Physics, 2007, 40, 759-764.	2.8	113
11	Sunlight induced formation of surface Bi2O4â^â€"Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenol. Applied Catalysis B: Environmental, 2015, 163, 444-451.	20.2	112
12	Nanocrystalline materials for the dosimetry of heavy charged particles: A review. Radiation Physics and Chemistry, 2011, 80, 1-10.	2.8	102
13	Nanocrystalline MgB4O7:Dy for high dose measurement of gamma radiation. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2416-2425.	1.8	101
14	Thermoluminescence and photoluminescence study of nanocrystalline Ba0.97Ca0.03SO4 : Eu. Journal Physics D: Applied Physics, 2007, 40, 1343-1350.	2.8	85
15	Nanoparticles of BaSO4:Eu for heavy-dose measurements. Journal of Luminescence, 2009, 129, 192-196.	3.1	84
16	Thermoluminescence and photoluminescence of ZrO2 nanoparticles. Radiation Physics and Chemistry, 2011, 80, 923-928.	2.8	77
17	Enhanced photocatalytic activity of V 2 O 5 \hat{a} \in "ZnO composites for the mineralization of nitrophenols. Chemosphere, 2014, 117, 115-123.	8.2	74
18	Nanoparticles of Al2O3:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 401-404.	1.4	55

#	Article	IF	Citations
19	Luminescence characteristics of K2Ca2(SO4)3:Eu,Tb micro- and nanocrystalline phosphor. Radiation Effects and Defects in Solids, 2004, 159, 321-334.	1.2	54
20	Flow controlled fabrication of N doped ZnO thin films and estimation of their performance for sunlight photocatalytic decontamination of water. Chemical Engineering Journal, 2016, 291, 115-127.	12.7	50
21	Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy, 2022, 99, 107331.	16.0	50
22	The influence of high-energy7Li ions on the TL response and glow curve structure of CaSO4 : Dy. Journal Physics D: Applied Physics, 2006, 39, 2684-2691.	2.8	48
23	Carbon nanotubes of oil fly ash as lubricant additives for different base oils and their tribology performance. RSC Advances, 2017, 7, 40295-40302.	3.6	46
24	Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 973-981.	2.8	46
25	The assessment of the photocatalytic activity of magnetically retrievable ZnO coated \hat{I}^3 -Fe2O3 in sunlight exposure. Chemical Engineering Journal, 2016, 283, 656-667.	12.7	45
26	Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature. International Journal of Nanomedicine, 2013, 8, 3875.	6.7	44
27	ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. Journal of Industrial and Engineering Chemistry, 2015, 23, 134-139.	5 . 8	43
28	Nanocrystalline Ba0.97Ca0.03SO4:Eu for ion beams dosimetry. Journal of Applied Physics, 2008, 104, 033520.	2.5	42
29	Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Materials Science and Engineering C, 2019, 99, 1164-1173.	7.3	41
30	In situ printing of scaffolds for reconstruction of bone defects. Acta Biomaterialia, 2021, 127, 313-326.	8.3	41
31	Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	40
32	Effect of Composition on Electrical and Optical Properties of Thin Films of Amorphous Ga x Se100â^'x Nanorods. Nanoscale Research Letters, 2010, 5, 1512-1517.	5.7	39
33	Formation of Carbon Nanotubes from Carbon-Rich Fly Ash: Growth Parameters and Mechanism. Materials and Manufacturing Processes, 2016, 31, 146-156.	4.7	38
34	Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 121-130.	4.7	37
35	Sustainable drug release from polycaprolactone coated chitin-lignin gel fibrous scaffolds. Scientific Reports, 2020, 10, 20428.	3.3	37
36	Ultra-Thin 2D CuO Nanosheet for HRP Immobilization Supported by Encapsulation in a Polymer Matrix: Characterization and Dye Degradation. Catalysis Letters, 2021, 151, 232-246.	2.6	36

3

#	Article	IF	CITATIONS
37	Tribological behavior of diamond-like carbon thin films deposited by the pulse laser technique at different substrate temperatures. Tribology International, 2016, 103, 274-280.	5.9	35
38	Nanoparticles of K2Ca2(SO4)3:Eu as effective detectors for swift heavy ions. Journal of Applied Physics, 2007, 102, 064904.	2.5	34
39	One-Dimensional Nanocomposites Based on Polypyrrole-Carbon Nanotubes and Their Thermoelectric Performance. Polymers, 2021, 13, 278.	4.5	33
40	Carbon ions irradiation on nano- and microcrystalline CaSO ₄ : Dy. Journal Physics D: Applied Physics, 2008, 41, 155302.	2.8	32
41	Ag/ZnO nanoparticles thin films as visible light photocatalysts. RSC Advances, 2014, 4, 56892-56899.	3.6	32
42	Modifications in TL characteristics of K2Ca2(SO4)3 : Eu by7Li MeV ion beam. Journal Physics D: Applied Physics, 2005, 38, 3995-4002.	2.8	30
43	Thermoluminescence properties of Al2O3:Tb nanoparticles irradiated by gamma rays and 85MeV C6+ ion beam. Journal of Luminescence, 2015, 167, 59-64.	3.1	30
44	Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Scientific Reports, 2019, 9, 20288.	3.3	30
45	Electrical and optical properties of a-SexTe100–x thin films. Optics and Laser Technology, 2012, 44, 6-11.	4.6	27
46	Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators. Journal of the European Ceramic Society, 2019, 39, 3307-3314.	5.7	27
47	Thermoluminescence of Ba0.97Ca0.03SO4:Eu irradiated with 48MeV 7Li ion beam. Nuclear Instruments & Methods in Physics Research B, 2007, 254, 231-235.	1.4	26
48	Nanorods of LiF:Mg,Cu,P as Detectors for Mixed Field Radiations. IEEE Nanotechnology Magazine, 2008, 7, 749-753.	2.0	26
49	Electrical transport properties of thin film of a-Se ₈₇ Te ₁₃ nanorods. Journal of Experimental Nanoscience, 2011, 6, 337-348.	2.4	26
50	Luminescence Properties of CaF ₂ Nanostructure Activated by Different Elements. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	26
51	TL, PL and energy transfer in. Radiation Measurements, 2006, 41, 665-670.	1.4	25
52	Thermoluminescence and photoluminescence of LiNaSO4:Eu irradiated with 24 and 48MeV 7Li ion beam. Journal of Luminescence, 2006, 121, 497-506.	3.1	25
53	Fabrication of Co-doped ZnO nanorods for spintronic devices. Metals and Materials International, 2013, 19, 845-850.	3.4	24
54	Formation of Mn-Doped SnO ₂ Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties. Nanomaterials and Nanotechnology, 2016, 6, 17.	3.0	24

#	Article	IF	Citations
55	Thermoluminescence and photoluminescence study of Ba0.97Ca0.03SO4 : Eu. Journal Physics D: Applied Physics, 2006, 39, 1786-1792.	2.8	23
56	Thermoluminescence of BaSO ₄ : Eu irradiated with 48 MeV Li ³⁺ and 150â·Ag ¹²⁺ ions. Journal Physics D: Applied Physics, 2008, 41, 085408.	€‰MeV 2.8	23
57	TL response of nanocrystalline MgB4O7:Dy irradiated by 3MeV proton beam, 50MeV Li3+ and 120MeV Ag9+ ion beams. Radiation Physics and Chemistry, 2013, 86, 52-58.	2.8	23
58	Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure. Journal of Environmental Management, 2016, 177, 53-64.	7.8	23
59	The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds. Materials, 2018, 11, 451.	2.9	23
60	Highly Luminescent Material Based on Alq3:Ag Nanoparticles. Journal of Fluorescence, 2013, 23, 1031-1037.	2.5	22
61	Sunlight mediated removal of chlorophenols over tungsten supported ZnO: Electrochemical and photocatalytic studies. Journal of Environmental Chemical Engineering, 2015, 3, 1901-1911.	6.7	22
62	Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26421-26430.	8.0	22
63	Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. Journal of Materials Science: Materials in Electronics, 2021, 32, 2075-2087.	2.2	21
64	Functionalization of gold and carbon nanostructured materials using gamma-ray irradiation. Radiation Physics and Chemistry, 2009, 78, 910-913.	2.8	20
65	Lubricant Additives Based on Carbon Nanotubes Produced from Carbon-Rich Fly Ash. Tribology Transactions, 2017, 60, 166-175.	2.0	20
66	Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives. Diamond and Related Materials, 2017, 78, 97-104.	3.9	20
67	Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance. Polymer, 2021, 228, 123950.	3.8	20
68	Carbon rich fly ash and their nanostructures. Carbon Letters, 2016, 19, 23-31.	5.9	20
69	Electrical transport via variable range hopping in an individual multi-wall carbon nanotube. Journal of Physics Condensed Matter, 2008, 20, 475207.	1.8	19
70	Copper activated LiF nanorods as TLD material for high exposures of gamma-rays. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3562-3565.	1.4	19
71	Synthesis and characterization of nano- and microcrystalline cubes of pure and Ag-doped LiF. Journal Physics D: Applied Physics, 2013, 46, 035305.	2.8	19
72	Thermoluminesence of gamma rays irradiated CaSO4 nanorods doped with different elements. Radiation Physics and Chemistry, 2015, 106, 40-45.	2.8	19

#	Article	IF	Citations
73	Synthesis and characterization of pure and Tb/Cu doped Alq3 nanostructures. Journal of Luminescence, 2013, 143, 640-644.	3.1	17
74	Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites. Journal of Alloys and Compounds, 2016, 680, 350-358.	5.5	17
75	Growth-controlled from SnO2 nanoparticles to SnO nanosheets with tunable properties. Materials and Design, 2016, 103, 339-347.	7.0	16
76	Role of N doping on the structural, optical and photocatalytic properties of the silver deposited ZnO thin films. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 131-138.	5.3	16
77	Study of Electrospinning Parameters and Collection Methods on Size Distribution and Orientation of PLA/PBS Hybrid Fiber Using Digital Image Processing. Journal of Nanoscience and Nanotechnology, 2018, 18, 8240-8251.	0.9	16
78	Quantum Effect on the Energy Levels of Eu2+ Doped K2Ca2(SO4)3 Nanoparticles. Journal of Fluorescence, 2010, 20, 1009-1015.	2.5	15
79	Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application. Journal of Nanoscience and Nanotechnology, 2016, 16, 439-447.	0.9	15
80	The effect of morphological modification on the thermoelectric properties of ZnO nanomaterials. Ceramics International, 2021, 47, 6169-6178.	4.8	15
81	Effects of X-ray irradiation on the structural and optical properties of microcrystalline Alq3 powder and its potential dosimetry application. Radiation Physics and Chemistry, 2021, 188, 109656.	2.8	15
82	Electrical properties of thin films of a-GaxTe100â^'xcomposed of nanoparticles. Philosophical Magazine Letters, 2011, 91, 207-213.	1.2	14
83	Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. Journal of Materials Science: Materials in Medicine, 2017, 28, 177.	3.6	14
84	Tunable fabrication of rice-like nanostructures aggregated into flowers of Alq3 with negligible photo-degradation for potential biomedical applications. Materials Chemistry and Physics, 2021, 259, 124080.	4.0	14
85	Direct bandgap materials based on the thin films of Se \times Te100 \hat{a} ° \times nanoparticles. Nanoscale Research Letters, 2012, 7, 509.	5.7	13
86	Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures. Crystals, 2020, 10, 610.	2.2	13
87	Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials. Polymers, 2022, 14, 2645.	4.5	13
88	TL and PL in BaSr(SO4)2:Eu mixed sulphate. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 898-905.	1.8	12
89	TL response of Eu activated LiF nanocubes irradiated by 85 MeV carbon ions. Nuclear Instruments & Methods in Physics Research B, 2015, 358, 201-205.	1.4	12
90	Elaboration of TiO2/carbon of oil fly ash nanocomposite as an eco-friendly photocatalytic thin-film material. Ceramics International, 2021, 47, 13544-13551.	4.8	12

#	Article	IF	Citations
91	Third-order nonlinear optical properties of the small-molecular organic semiconductor tris (8-Hydroxyquinoline) aluminum by CW Z-scan technique. Results in Physics, 2021, 24, 104162.	4.1	12
92	Morphology and Optical Properties of Thin Films of Ga _{<i>x</i>} Nanoparticles. Nanoscience and Nanotechnology Letters, 2011, 3, 319-323.	0.4	12
93	Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors. Nanomaterials, 2022, 12, 122.	4.1	12
94	Effect of Tb3+ co-doping and particle size on K2Ca2(SO4)3:EU phosphor. Radiation Effects and Defects in Solids, 2003, 158, 819-825.	1.2	11
95	Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices. Thin Solid Films, 2013, 531, 70-75.	1.8	11
96	Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15MeV e-beam. Nuclear Instruments & Methods in Physics Research B, 2014, 319, 107-111.	1.4	11
97	Thermoluminescence of gamma rays irradiated LiF nanocubes doped with different elements. Journal of Luminescence, 2015, 161, 313-317.	3.1	11
98	Synthesis and characterization of Indium doped Lead chalcogenides(PbSe)100â^'xInx thin films composed of QDs. Journal of Alloys and Compounds, 2017, 701, 850-857.	5.5	11
99	Effective dopants for Cul single nanocrystals as a promising room temperature thermoelectric material. Ceramics International, 2020, 46, 27244-27253.	4.8	11
100	Controlled nanostructuring via aluminum doping in CuO nanosheets for enhanced thermoelectric performance. Journal of Alloys and Compounds, 2021, 869, 159370.	5.5	11
101	Fabrication of Alq3/PMMA nanocomposite sheet and its potential applications as radiation dosimeter. Journal of Luminescence, 2022, 242, 118588.	3.1	11
102	Synthesis and Characterization of Nanoparticle Films and Their Optical Properties. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	10
103	Optical studies on Zn-doped lead chalcogenide (PbSe)100â^'xZnx thin films composed of nanoparticles. Thin Solid Films, 2016, 612, 109-115.	1.8	10
104	Highly luminescent Alq3: Zn nanowires. Materials Research Express, 2019, 6, 105052.	1.6	10
105	Nano and micro structures produced from carbon rich fly ash as effective lubricant additives for 150SN base oil. Journal of Materials Research and Technology, 2019, 8, 250-258.	5.8	10
106	Effect of high-energy ions on the TL behavior of LiF:Mg,Cu,P detectors. Radiation Measurements, 2007, 42, 1294-1300.	1.4	9
107	Color Centers Formation in Lithium Fluoride Nanocubes Doped with Different Elements. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	9
108	Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polymer Bulletin, 2021, 78, 261-281.	3.3	9

#	Article	IF	Citations
109	Polypyrrole sheets composed of nanoparticles as a promising room temperature thermo-electric material. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114889.	2.7	9
110	Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation. PLoS ONE, 2016, 11, e0156093.	2.5	8
111	UV-irradiated carbon nanotubes synthesized from fly ash for adsorption of congo red dyes in aqueous solution. Desalination and Water Treatment, 2016, 57, 21534-21544.	1.0	8
112	Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik, 2018, 171, 183-189.	2.9	8
113	The performance of silver modified tungsten oxide for the removal of 2-CP and 2-NP in sunlight exposure: Optical, electrochemical and photocatalytic properties. Arabian Journal of Chemistry, 2019, 12, 2632-2643.	4.9	8
114	Photocatalytic properties of TiS2 nanodisc and Sb@TiS2 nanocomposite for methylene blue dye. Optik, 2020, 207, 163810.	2.9	8
115	DC electrical conductivity retention and antibacterial aspects of microwave-assisted ultrathin CuO@polyaniline composite. Chemical Papers, 2020, 74, 3887-3898.	2.2	8
116	Fabrication of highly efficient organic light-emitting diode based on dysprosium-incorporated tris-(8-hydroxyquinoline)aluminum. Journal of Materials Science: Materials in Electronics, 2020, 31, 22179-22189.	2.2	8
117	The nanoparticles of BaSO _{4:Eu as detectors for high doses of different ionising radiations. Atoms for Peace: an International Journal, 2010, 3, 84.}	0.0	7
118	Magnetic properties of microwave-synthesized Mn-doped SnO2 nanoparticles. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
119	Studies on selenium rich Lead Chalcogenide Pb 5 Se $95\hat{a}$ X Zn x (X =0, 2.5, 5, and 10) thin films composed of NPs. Materials Science in Semiconductor Processing, 2017, 60, 53-59.	4.0	7
120	Microwave synthesis of 2D SnO nanosheets: effects of annealing temperatures on their thermoelectric properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 3598-3606.	2.2	7
121	The influence of transition metal doping on the thermoelectric and magnetic properties of microwave synthesized SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 435-445.	2.2	7
122	Ajwa Nanopreparation Prevents Doxorubicin-Associated Cardiac Dysfunction: Effect on Cardiac Ischemia and Antioxidant Capacity. Integrative Cancer Therapies, 2019, 18, 153473541986235.	2.0	7
123	Thermoelectric properties of oil fly ash-derived carbon nanotubes coated with polypyrrole. Journal of Applied Physics, 2020, 128, 235104.	2.5	7
124	Insecticidal effects of pure and silver-doped copper oxide nanosheets on <i>Spodoptera littoralis</i> (Lepidoptera: Noctuidae). Canadian Entomologist, 2017, 149, 677-690.	0.8	6
125	Polymer composite reinforced with nanoparticles produced from graphitic carbon-rich fly ash. Journal of Composite Materials, 2017, 51, 2675-2685.	2.4	6
126	Annealing effect on structural and optical properties of nanostructured carbon of oil fly ash modified titania thin-film. Results in Physics, 2021, 25, 104335.	4.1	5

#	Article	IF	CITATIONS
127	Multi-Walled Carbon Nanotubes Film Sensor for Carbon Mono-Oxide Gas. Current Nanoscience, 2012, 8, 274-279.	1.2	5
128	Investigation of the tris(8-hydroxyquinoline) aluminum as a promising fluorescent optical material for in vitro bioimaging. Optical Materials, 2022, 127, 112260.	3.6	5
129	Fabrication of size-controlled Alq3 nanoparticles within PMMA matrix in the form of nanocomposite sheet for potential use as UV dosimeter. Optical Materials, 2022, 128, 112402.	3.6	5
130	Study of structure-dependent response kinetics of porous silicon for selective detection of organic vapors. Philosophical Magazine Letters, 2013, 93, 1-8.	1.2	4
131	Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection. Mathematical Problems in Engineering, 2013, 2013, 1-11.	1.1	4
132	Electrical Transport Properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>Ni </mml:mtext> <mml:mrow> < Multi wall Carbon Nanotubes Film. Journal of Nanomaterials, 2009, 2009, 1-8.</mml:mrow></mml:msub></mml:math>	cm ørk mtex	xt>95
133	Synthesis of carbon nanotubes using pre-sintered oil fly ash via a reproducible process with large-scale potential. Methods, 2021 , , .	3.8	3
134	Functional enhancement in Alq3 via metal doping and nanoscale synthesis: a review. Applied Nanoscience (Switzerland), 2022, 12, 1365-1385.	3.1	3
135	Structural Modifications and Enhanced Thermoelectric Performance of Cul Nanoparticles Induced via Alâ€Doping. Advanced Electronic Materials, 2022, 8, .	5.1	3
136	Freestanding Activated Carbon Nanocomposite Electrodes for Capacitive Deionization of Water. Polymers, 2022, 14, 2891.	4.5	3
137	Thermoluminescence of silica-based materials irradiated by thermal neutrons. Journal Physics D: Applied Physics, 2008, 41, 065103.	2.8	2
138	Effect of $\langle i \rangle \hat{I}^3 \langle i \rangle$ -irradiation on electrical transport properties of ZnTe thin films composed of nanostructures. Materials Express, 2017, 7, 189-198.	0.5	2
139	Carbon Mono-Oxide Gas Sensing Based on Multi-Walled Carbon Nanotubes Decorated with Gold Nanoparticles Based Film Sensors. Advanced Science Letters, 2014, 20, 1268-1273.	0.2	2
140	Graphene and Carbon Nanotubes Fibrous Composite Decorated with PdMg Alloy Nanoparticles with Enhanced Absorption–Desorption Kinetics for Hydrogen Storage Application. Nanomaterials, 2021, 11, 2957.	4.1	2
141	Synthesis and characterisation of tin dioxide nanoparticles and effect of annealing temperature. International Journal of Nanoparticles, 2009, 2, 263.	0.3	1
142	The performance of $Zn \cdot sub \cdot 1\hat{a}' \cdot i \times x \cdot /i \times x \cdot /sub \cdot Ce \cdot i \times x \cdot /sub \times x \cdot /sub \times x \cdot /i \times O$ nanoparticles thin films in sunlight exposure: synthesis, characterization and photocatalytic activity. Desalination and Water Treatment, 2016, 57, 25581-25590.	1.0	1
143	Studies on Carbon Mono-Oxide Gas Sensing of Carbon Nanotubes Film. Advanced Science Letters, 2014, 20, 1597-1600.	0.2	1
144	Optical properties of LiF:Mg,Cu,P nanorods. International Journal of Nano and Biomaterials, 2009, 2, 118.	0.1	0

#	Article	IF	CITATIONS
145	J-E characteristics of Ni-catalysed multiwalled carbon nanotubes. International Journal of Nano and Biomaterials, 2009, 2, 226.	0.1	0
146	Direct Bandgap Material Based on Thin Film of Te ₉₇ Ga ₃ Nanoparticles. ECS Journal of Solid State Science and Technology, 2012, 1, Q96-Q99.	1.8	0
147	Study of structure-dependent response kinetics of porous silicon for selective detection of organic vapors [<i>Philosophical Magazine Letters</i> , DOI: 10.1080/09500839.2012.727487]. Philosophical Magazine Letters, 2013, 93, 129-129.	1.2	0
148	Modeling carbon nanomaterial cell internalization for drug carrier applications. , 2014, , .		0
149	Thermoelectric and Magnetic Properties of Sn1â^'x O2:Mn0.5x Co0.5x Nanoparticles Produced by the Microwave Technique. Journal of Electronic Materials, 2017, 46, 1190-1200.	2.2	0