Júlio César Sczancoski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335433/publications.pdf

Version: 2024-02-01

35 papers 2,602 citations

304743 22 h-index 35 g-index

35 all docs 35 docs citations

35 times ranked 2368 citing authors

#	Article	IF	Citations
1	Effect of Different Solvent Ratios (Water/Ethylene Glycol) on the Growth Process of CaMoO ₄ Crystals and Their Optical Properties. Crystal Growth and Design, 2010, 10, 4752-4768.	3.0	204
2	Electronic structure, growth mechanism and photoluminescence of CaWO ₄ crystals. CrystEngComm, 2012, 14, 853-868.	2.6	200
3	SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties. Chemical Engineering Journal, 2008, 140, 632-637.	12.7	187
4	Morphology and Blue Photoluminescence Emission of PbMoO ₄ Processed in Conventional Hydrothermal. Journal of Physical Chemistry C, 2009, 113, 5812-5822.	3.1	171
5	Electronic structure and optical properties of BaMoO4 powders. Current Applied Physics, 2010, 10, 614-624.	2.4	150
6	Synthesis, growth process and photoluminescence properties of SrWO4 powders. Journal of Colloid and Interface Science, 2009, 330, 227-236.	9.4	141
7	Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of Î ² -Ag ₂ MoO ₄ Microcrystals. Inorganic Chemistry, 2014, 53, 5589-5599.	4.0	133
8	Hierarchical Assembly of CaMoO ₄ Nano-Octahedrons and Their Photoluminescence Properties. Journal of Physical Chemistry C, 2011, 115, 5207-5219.	3.1	130
9	Facet-dependent photocatalytic and antibacterial properties of α-Ag ₂ WO ₄ crystals: combining experimental data and theoretical insights. Catalysis Science and Technology, 2015, 5, 4091-4107.	4.1	123
10	Experimental and Theoretical Study on the Structure, Optical Properties, and Growth of Metallic Silver Nanostructures in Ag ₃ PO ₄ . Journal of Physical Chemistry C, 2015, 119, 6293-6306.	3.1	120
11	Synthesis, Characterization, Anisotropic Growth and Photoluminescence of BaWO ₄ . Crystal Growth and Design, 2009, 9, 1002-1012.	3.0	115
12	Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Advanced Powder Technology, 2010, 21, 197-202.	4.1	110
13	BaMoO4 powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature. Journal of Physics and Chemistry of Solids, 2008, 69, 2674-2680.	4.0	100
14	Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Materials Chemistry and Physics, 2009, 117, 192-198.	4.0	96
15	Optical and dielectric relaxor behaviour of Ba(Zr _{0.25} Ti _{0.75})O ₃ ceramic explained by means of distorted clusters. Journal Physics D: Applied Physics, 2009, 42, 175414.	2.8	93
16	Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal. Journal of Alloys and Compounds, 2009, 474, 195-200.	5.5	92
17	Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Advanced Powder Technology, 2013, 24, 344-353.	4.1	89
18	Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49, 35-46.	2.4	81

#	Article	IF	CITATIONS
19	Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling. Particuology, 2009, 7, 353-362.	3.6	76
20	Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceramics International, 2018, 44, 236-245.	4.8	36
21	A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. Journal of Solid State Chemistry, 2017, 249, 64-69.	2.9	24
22	Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag Cu PO4 powders. Applied Surface Science, 2018, 440, 61-72.	6.1	24
23	Sol–gel synthesis and characterization of Fe2O3ÂÂ∙ÂCeO2 doped with Pr ceramic pigments. Journal of Sol-Gel Science and Technology, 2008, 47, 38-43.	2.4	17
24	Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 11310-11318.	3.1	16
25	Investigation on the photocatalytic performance of Ag4P2O7 microcrystals for the degradation of organic pollutants. Applied Surface Science, 2019, 493, 1195-1204.	6.1	15
26	Investigation of the electrocatalytic performance for oxygen evolution reaction of Fe-doped lanthanum nickelate deposited on pyrolytic graphite sheets. International Journal of Hydrogen Energy, 2019, 44, 21659-21672.	7.1	13
27	Atomic Diffusion Induced by Electron-Beam Irradiation: An <i>in Situ</i> Study of Ag Structures Grown from α-Ag ₂ WO ₄ . Crystal Growth and Design, 2019, 19, 106-115.	3.0	9
28	Structure, Morphology Features and Photocatalytic Properties of α-Ag2WO4 Nanocrystals-modified Palygorskite Clay. Journal of Photocatalysis, 2021, 2, 114-129.	0.4	9
29	Structural and morphological characteristics of (Pb1â^'x Sr x)TiO3 powders obtained by polymeric precursor method. Journal of Sol-Gel Science and Technology, 2010, 53, 21-29.	2.4	7
30	A versatile approach for the preparation of ceramics with porosity gradient: by using manganese and tin oxides as a model. Journal of the European Ceramic Society, 2018, 38, 2027-2034.	5.7	5
31	Morphological aspects and optical properties of Ag4P2O7. Materials Letters, 2019, 248, 193-196.	2.6	4
32	Insight into the enhanced photocatalytic properties of AgBr/Ag4P2O7 composites synthesized via in situ ion exchange reaction. Journal of Environmental Chemical Engineering, 2021, 9, 104889.	6.7	4
33	Tailoring the photoluminescence of BaMoO4 and BaWO4 hierarchical architectures via precipitation induced by a fast precursor injection. Materials Letters, 2021, 293, 129681.	2.6	4
34	Influence of SnO2 concentration on electrical response of α-Fe2O3 sintered with different thermal history conditions. Ceramics International, 2020, 46, 27877-27883.	4.8	2
35	Structural Refinement, Morphological Features, and Optical, Photo- and Sonophotocatalytic Properties of (Ca1-xSrx)WO4 Synthesized by the Sonochemical Method. Journal of Photocatalysis, 2021, 2, 147-164.	0.4	2