Robert J Letcher

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6335199/robert-j-letcher-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 9,063 90 54 h-index g-index citations papers 8.6 6.39 167 10,140 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
166	Global distribution of ustiloxins in rice and their male-biased hepatotoxicity <i>Environmental Pollution</i> , 2022 , 301, 118992	9.3	1
165	Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review <i>Environment International</i> , 2022 , 161, 107097	12.9	0
164	A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals <i>Science of the Total Environment</i> , 2022 , 829, 154445	10.2	3
163	Climate change and mercury in the Arctic: Biotic interactions <i>Science of the Total Environment</i> , 2022 , 155221	10.2	4
162	Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China <i>Environmental Pollution</i> , 2022 , 119460	9.3	O
161	A Critical Review of Bioaccumulation and Biotransformation of Organic Chemicals in Birds. <i>Reviews of Environmental Contamination and Toxicology</i> , 2022 , 260,	3.5	1
160	Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs. <i>Environmental Research</i> , 2021 , 207, 112169	7.9	4
159	Individual Prey Specialization Drives PCBs in Icelandic Killer Whales. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 4923-4931	10.3	3
158	Emerging contaminants and biological effects in Arctic wildlife. <i>Trends in Ecology and Evolution</i> , 2021 , 36, 421-429	10.9	8
157	Tris(1,3-dichloro-2-propyl)phosphate Reduces Growth Hormone Expression via Binding to Growth Hormone Releasing Hormone Receptors and Inhibits the Growth of Crucian Carp. <i>Environmental Science & Camp; Technology</i> , 2021 , 55, 8108-8118	10.3	2
156	A comprehensive system for detection of behavioral change of D. magna exposed to various chemicals. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123731	12.8	4
155	Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. <i>Environment International</i> , 2021 , 155, 106691	12.9	18
154	Perfluoroalkyl acids and sulfonamides and dietary, biological and ecological associations in peregrine falcons from the Laurentian Great Lakes Basin, Canada. <i>Environmental Research</i> , 2020 , 191, 110151	7.9	6
153	Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. <i>Environmental Science & Technology</i> , 2020 , 54, 4455-4464	10.3	35
152	Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. <i>Journal of Hazardous Materials</i> , 2020 , 388, 122044	12.8	18
151	Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1, 3-dichloro-2-propyl) phosphate. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 191, 110220	7	5
150	Distribution behaviour in body compartments and in ovo transfer of flame retardants in North American Great Lakes herring gulls. <i>Environmental Pollution</i> , 2020 , 262, 114306	9.3	6

149 Polar Bear (Ursus maritimus) **2020**, 196-212

148	Assessment of the effects of early life exposure to triphenyl phosphate on fear, boldness, aggression, and activity in Japanese quail (Coturnix japonica) chicks. <i>Environmental Pollution</i> , 2020 , 258, 113695	9.3	4
147	Uptake, Deposition, and Metabolism of Triphenyl Phosphate in Embryonated Eggs and Chicks of Japanese Quail (Coturnix japonica). <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 565-573	3.8	2
146	Validated quantitative cannabis profiling for Canadian regulatory compliance - Cannabinoids, aflatoxins, and terpenes. <i>Analytica Chimica Acta</i> , 2019 , 1088, 79-88	6.6	18
145	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. <i>Science of the Total Environment</i> , 2019 , 696, 133792	10.2	103
144	A rapid method of preparing complex organohalogen extracts from avian eggs: Applications to in vitro toxicogenomics screening. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 811-819	3.8	6
143	Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey. <i>Environmental Pollution</i> , 2019 , 252, 1335-1343	9.3	38
142	Hexachlorobutadiene (HCBD) contamination in the Arctic environment: A review. <i>Emerging Contaminants</i> , 2019 , 5, 116-122	5.8	9
141	Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry. <i>Environment International</i> , 2019 , 128, 343-352	12.9	50
140	A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems. <i>Emerging Contaminants</i> , 2019 , 5, 89-115	5.8	29
139	A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. <i>Environment International</i> , 2019 , 127, 35-51	1 ^{12.9}	107
138	Tetrabromobisphenol-A-Bis(dibromopropyl ether) Flame Retardant in Eggs, Regurgitates, and Feces of Herring Gulls from Multiple North American Great Lakes Locations. <i>Environmental Science & Environmental Science</i>	10.3	8
137	In vitro metabolic activation of triphenyl phosphate leading to the formation of glutathione conjugates by rat liver microsomes. <i>Chemosphere</i> , 2019 , 237, 124474	8.4	4
136	Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. <i>Science of the Total Environment</i> , 2019 , 693, 133654	10.2	20
135	A review of chlorinated paraffin contamination in Arctic ecosystems. <i>Emerging Contaminants</i> , 2019 , 5, 219-231	5.8	16
134	Current-use halogenated and organophosphorous flame retardants: A review of their presence in Arctic ecosystems. <i>Emerging Contaminants</i> , 2019 , 5, 179-200	5.8	23
133	Response to L. Witting: PCBs still a major risk for global killer whale populations. <i>Marine Mammal Science</i> , 2019 , 35, 1201-1206	1.9	4
132	Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras transgenic zebrafish. <i>Environmental Pollution</i> , 2019 , 255, 113315	9.3	9

131	State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. <i>Science of the Total Environment</i> , 2019 , 664, 1063-1083	10.2	80
130	Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 ,	11.5	30
129	Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. <i>Environmental Science & Diechnology</i> , 2019 , 53, 2151-2160	10.3	39
128	Structure-Dependent in Vitro Metabolism of Alkyl-Substituted Analogues of Triphenyl Phosphate in East Greenland Polar Bears and Ringed Seals. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 214-219	11	14
127	Polychlorinated Diphenylsulfides Activate Aryl Hydrocarbon Receptor 2 in Zebrafish Embryos: Potential Mechanism of Developmental Toxicity. <i>Environmental Science & Developmental</i> , 2018, 52, 4402-4412	10.3	13
126	Persistent organic pollutants and penile bone mineral density in East Greenland and Canadian polar bears (Ursus maritimus) during 1996-2015. <i>Environment International</i> , 2018 , 114, 212-218	12.9	11
125	Covalent binding of the organophosphate insecticide profenofos to tyrosine on Eand Etubulin proteins. <i>Chemosphere</i> , 2018 , 199, 154-159	8.4	8
124	Perfluoroalkyl Acids in European Starling Eggs Indicate Landfill and Urban Influences in Canadian Terrestrial Environments. <i>Environmental Science & Environmental Science & E</i>	10.3	13
123	Liquid Crystal Monomers (LCMs): A New Generation of Persistent Bioaccumulative and Toxic (PBT) Compounds?. <i>Environmental Science & Environmental Scie</i>	10.3	22
122	A mixed-mode chromatographic separation method for the analysis of dialkyl phosphates. <i>Journal of Chromatography A</i> , 2018 , 1535, 63-71	4.5	8
121	Persistent organic pollutants, skull size and bone density of polar bears (Ursus maritimus) from East Greenland 1892-2015 and Svalbard 1964-2004. <i>Environmental Research</i> , 2018 , 162, 74-80	7.9	14
120	In Vitro and in Silico Competitive Binding of Brominated Polyphenyl Ether Contaminants with Human and Gull Thyroid Hormone Transport Proteins. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	10
119	Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. <i>Toxicology Letters</i> , 2018 , 285, 87-93	4.4	32
118	Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and in vitro depletion and metabolite formation. <i>Chemosphere</i> , 2018 , 196, 240-250	8.4	30
117	Isomer-Specific Hexabromocyclododecane (HBCDD) Levels in Top Predator Fish from Across Canada and 36-Year Temporal Trends in Lake Ontario. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	10
116	Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983-2013. <i>Environment International</i> , 2018 , 118, 169-178	12.9	64
115	Photolysis of highly brominated flame retardants leads to time-dependent dioxin-responsive mRNA expression in chicken embryonic hepatocytes. <i>Chemosphere</i> , 2018 , 194, 352-359	8.4	12
114	Chemical and biological transfer: Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?. <i>Environmental Pollution</i> , 2018 , 243, 1376-1382	9.3	7

113	Predicting global killer whale population collapse from PCB pollution. <i>Science</i> , 2018 , 361, 1373-1376	33.3	150
112	Unexpected Observations: Exposure to Aromatase Inhibitor Prochloraz Did Not Alter the Vitellogenin Content of Zebrafish Ova but Did Inhibit the Growth of Larval Offspring. Environmental Science and Technology Letters, 2018, 5, 629-634	11	3
111	Down-Regulation of hspb9 and hspb11 Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 12829-12840	10.3	5
110	Unusually high Deca-BDE concentrations and new flame retardants in a Canadian Arctic top predator, the glaucous gull. <i>Science of the Total Environment</i> , 2018 , 639, 977-987	10.2	32
109	Exposure to tris(1,3-dichloro-2-propyl) phosphate for Two generations decreases fecundity of zebrafish at environmentally relevant concentrations. <i>Aquatic Toxicology</i> , 2018 , 200, 178-187	5.1	12
108	In ovo tris(2-butoxyethyl) phosphate concentrations significantly decrease in late incubation after a single exposure via injection, with no evidence of effects on hatching success or latent effects on growth or reproduction in zebra finches. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 83-88	3.8	4
107	Contaminants of emerging concern in Caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America. <i>Environmental Pollution</i> , 2017 , 222, 154-164	9.3	35
106	Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish. <i>Environmental Pollution</i> , 2017 , 229, 470-478	9.3	30
105	Exploring adduct formation between human serum albumin and eleven organophosphate ester flame retardants and plasticizers using MALDI-TOF/TOF and LC-Q/TOF. <i>Chemosphere</i> , 2017 , 180, 169-17	7 <mark>8</mark> ·4	13
104	A rapid analytical method to quantify complex organohalogen contaminant mixtures in large samples of high lipid mammalian tissues. <i>Chemosphere</i> , 2017 , 176, 243-248	8.4	9
103	Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity. <i>Environmental Science & Environmental Science & Envir</i>	10.3	39
102	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. <i>Chemosphere</i> , 2017 , 186, 209-217	8.4	2
101	Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. <i>Science of the Total Environment</i> , 2017 , 607-608, 262-270	10.2	21
100	Volatile Methylsiloxanes and Organophosphate Esters in the Eggs of European Starlings (Sturnus vulgaris) and Congeneric Gull Species from Locations across Canada. <i>Environmental Science & Eamp; Technology</i> , 2017 , 51, 9836-9845	10.3	24
99	Optimization of an assay methodology for competitive binding of thyroidogenic xenobiotics with thyroxine on human transthyretin and albumin. <i>MethodsX</i> , 2017 , 4, 404-412	1.9	2
98	Whole-Life-Stage Characterization in the Basic Biology of Daphnia magna and Effects of TDCIPP on Growth, Reproduction, Survival, and Transcription of Genes. <i>Environmental Science & Environmental Sc</i>	10.3	31
97	Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon. <i>Environmental Research</i> , 2017 , 158, 43-53	7.9	30
96	Halogenated Flame Retardants in Predator and Prey Fish From the Laurentian Great Lakes: Age-Dependent Accumulation and Trophic Transfer. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	33

95	A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2017 , 98, 2-7	2.7	119
94	Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. <i>Environmental Pollution</i> , 2017 , 220, 196-203	9.3	54
93	Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. <i>Environmental Pollution</i> , 2016 , 218, 50-58	9.3	18
92	Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. <i>Toxicology and Applied Pharmacology</i> , 2016 , 308, 59-65	4.6	66
91	A Reagent-Free Screening Assay for Evaluation of the Effects of Chemicals on the Proliferation and Morphology of HeLa-GFP Cells. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 322-326	11	2
90	Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. <i>Environmental Research</i> , 2016 , 150, 255-263	7.9	69
89	Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish. <i>Scientific Reports</i> , 2016 , 6, 19045	4.9	39
88	Organophosphate Flame Retardants and Plasticizers in Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. <i>Environmental Science & Environmental Science & Envir</i>	10.3	88
87	Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States. <i>Science of the Total Environment</i> , 2016 , 565, 440-450	10.2	18
86	Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. <i>Environmental Science & Environmental Science</i>	10.3	17
85	A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. <i>Environmental Science & Environmental Science</i>	10.3	58
84	Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. <i>Chemosphere</i> , 2016 , 149, 314-9	8.4	32
83	Organophosphate pesticide method development and presence of chlorpyrifos in the feet of nearctic-neotropical migratory songbirds from Canada that over-winter in Central America agricultural areas. <i>Chemosphere</i> , 2016 , 144, 827-35	8.4	5
82	In Vitro Metabolism of Photolytic Breakdown Products of Tetradecabromo-1,4-diphenoxybenzene Flame Retardant in Herring Gull and Rat Liver Microsomal Assays. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 8335-43	10.3	7
81	Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2015 , 95, 31-6	2.7	15
80	Uptake, distribution, depletion, and in ovo transfer of isomers of hexabromocyclododecane flame retardant in diet-exposed American kestrels (Falco sparverius). <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1103-12	3.8	20
79	Methodology and determination of tetradecabromo-1, 4-diphenoxybenzene flame retardant and breakdown by-products in sediments from the Laurentian Great Lakes. <i>Chemosphere</i> , 2015 , 118, 342-49	8.4	9
78	Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 7448	1953	51

(2014-2015)

77	Determination of organophosphate flame retardants and plasticizers in lipid-rich matrices using dispersive solid-phase extraction as a sample cleanup step and ultra-high performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. <i>Analytica</i>	6.6	38
76	Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic. <i>Environmental Research</i> , 2015 , 140, 45-55	7.9	65
75	Legacy and emerging organic pollutants in liver and plasma of long-finned pilot whales (Globicephala melas) from waters surrounding the Faroe Islands. <i>Science of the Total Environment</i> , 2015 , 520, 270-85	10.2	15
74	In VitroMetabolism of the Flame Retardant Triphenyl Phosphate in Chicken Embryonic Hepatocytes and the Importance of the Hydroxylation Pathway. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 100-104	11	71
73	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit Growth of Female Zebrafish and Decrease Fecundity. <i>Environmental Science & Environmental Science</i>	10.3	76
72	Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. <i>Environmental Research</i> , 2015 , 142, 720-30	7.9	60
71	Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of Daphnia magna at Environmentally Relevant Concentrations. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 12975-83	10.3	56
70	Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes. <i>Environmental Science & Emp; Technology</i> , 2015 , 49, 10190-8	10.3	17
69	Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus). <i>Environmental Research</i> , 2015 , 136, 413-23	7.9	35
68	Trends of polybrominated diphenyl ethers and hexabromocyclododecane in eggs of Canadian Arctic seabirds reflect changing use patterns. <i>Environmental Research</i> , 2015 , 142, 651-61	7.9	32
67	A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems. <i>Environmental Epigenetics</i> , 2015 , 61, 617-	628	94
66	Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry. <i>Journal of Chromatography A</i> , 2015 , 1426, 154-60	4.5	35
65	Penile density and globally used chemicals in Canadian and Greenland polar bears. <i>Environmental Research</i> , 2015 , 137, 287-91	7.9	27
64	Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls. <i>Environmental Science & Environmental &</i>	10.3	139
63	Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. <i>Environmental Pollution</i> , 2014 , 193, 254-261	9.3	85
62	Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos. <i>Toxicology and Applied Pharmacology</i> , 2014 , 279, 303-310	4.6	38
61	In vitro metabolic formation of perfluoroalkyl sulfonamides from copolymer surfactants of pre- and post-2002 scotchgard fabric protector products. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 618	4-94	26
60	1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos. <i>Toxicology and Applied Pharmacology</i> , 2014 , 277, 279-87	4.6	23

59	Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal. <i>Chemosphere</i> , 2014 , 112, 225-	31 ^{8.4}	39
58	Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. <i>Environmental Science & Environmental Science </i>	10.3	138
57	Liquid chromatography-electrospray-tandem mass spectrometry method for determination of organophosphate diesters in biotic samples including Great Lakes herring gull plasma. <i>Journal of Chromatography A</i> , 2014 , 1374, 85-92	4.5	39
56	Steroid hormones in blood plasma from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen polluted minke whale (Balaenoptera acuterostrata) blubber. <i>Toxicological and Environmental Chemistry</i> , 2014 , 96, 273-286	1.4	19
55	Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes. <i>Environmental Science & Technology</i> , 2014 , 48, 12039-46	10.3	34
54	Perfluoroalkyl acids in the Canadian environment: multi-media assessment of current status and trends. <i>Environment International</i> , 2013 , 59, 183-200	12.9	54
53	Three decades (1983-2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 2: brominated flame retardants. <i>Environment International</i> , 2013 , 59, 494-500	12.9	52
52	Three decades (1983-2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 1: legacy organochlorine contaminants. <i>Environment International</i> , 2013 , 59, 485-93	12.9	66
51	In Ovo effects of two organophosphate flame retardantsTCPP and TDCPPon pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos. <i>Toxicological Sciences</i> , 2013 , 134, 92-102	4.4	146
50	Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. <i>Global Change Biology</i> , 2013 , 19, 2360-72	11.4	120
49	Tetradecabromodiphenoxybenzene flame retardant undergoes photolytic debromination. <i>Environmental Science & Environmental Scie</i>	10.3	19
48	European starlings (Sturnus vulgaris) suggest that landfills are an important source of bioaccumulative flame retardants to Canadian terrestrial ecosystems. <i>Environmental Science & Technology</i> , 2013 , 47, 12238-47	10.3	49
47	Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada. <i>Environmental Pollution</i> , 2012 , 168, 1-9	9.3	86
46	Reply to Comment on Novel Methoxylated Polybrominated Diphenoxybenzene Congeners and Possible Sources in Herring Gull Eggs from the Laurentian Great Lakes of North Americall Environmental Science &	10.3	3
45	Flame retardants in eggs of American kestrels and European starlings from southern Lake Ontario region (North America). <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2870-6		22
44	Novel flame retardants in urban-feeding ring-billed gulls from the St. Lawrence River, Canada. <i>Environmental Science & Environmental </i>	10.3	85
43	Newly discovered methoxylated polybrominated diphenoxybenzenes have been contaminants in the Great Lakes herring gull eggs for thirty years. <i>Environmental Science & Environmental Science & Environm</i>	10.3	14
42	Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1220, 169-74	4.5	133

41	Monitoring of perfluorinated compounds in aquatic biota: an updated review. <i>Environmental Science & Environmental Science & E</i>	10.3	553
40	Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005-2008. <i>Environment International</i> , 2011 , 37, 365-74	12.9	96
39	Perfluoroalkyl carboxylates and sulfonates and precursors in relation to dietary source tracers in the eggs of four species of gulls (Larids) from breeding sites spanning Atlantic to Pacific Canada. <i>Environment International</i> , 2011 , 37, 1175-82	12.9	52
38	Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge-cyanobacteria associations. <i>Marine Pollution Bulletin</i> , 2011 , 62, 631-6	6.7	22
37	Dicationic ion-pairing of phosphoric acid diesters post-liquid chromatography and subsequent determination by electrospray positive ionization-tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2011 , 1218, 8083-8	4.5	39
36	Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1506-14	3.8	41
35	Twenty years of temporal change in perfluoroalkyl sulfonate and carboxylate contaminants in herring gull eggs from the Laurentian Great Lakes. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3365	5-72	46
34	Novel methoxylated polybrominated diphenoxybenzene congeners and possible sources in herring gull eggs from the Laurentian Great Lakes of North America. <i>Environmental Science & Environmental Scienc</i>	10.3	38
33	Pipping success, isomer-specific accumulation, and hepatic mRNA expression in chicken embryos exposed to HBCD. <i>Toxicological Sciences</i> , 2010 , 115, 492-500	4.4	35
32	Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	79
31	Historical contaminants, flame retardants, and halogenated phenolic compounds in peregrine Falcon (Falco peregrinus) nestlings in the Canadian Great Lakes Basin. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3520-6	10.3	59
30	High-sensitivity method for determination of tetrabromobisphenol-S and tetrabromobisphenol-A derivative flame retardants in great lakes herring gull eggs by liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. <i>Environmental Science & Environmental & Env</i>	10.3	67
29	Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. <i>Science of the Total Environment</i> , 2010 , 408, 2995-3043	10.2	586
28	Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro. Environmental Health Perspectives, 2009 , 117, 197-202	8.4	195
27	Recombinant transthyretin purification and competitive binding with organohalogen compounds in two gull species (Larus argentatus and Larus hyperboreus). <i>Toxicological Sciences</i> , 2009 , 107, 440-50	4.4	90
26	Biochemical tracers reveal intra-specific differences in the food webs utilized by individual seabirds. <i>Oecologia</i> , 2009 , 160, 15-23	2.9	36
25	Polybrominated diphenyl ethers and their hydroxylated analogues in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. <i>Environmental Science & Environmental Scien</i>	10.3	68
24	Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. <i>Environmental Science & Environmental </i>	10.3	113

23	Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland. <i>Environment International</i> , 2009 , 35, 1118-24	12.9	91
22	Isomers of Dechlorane Plus flame retardant in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes of North America: temporal changes and spatial distribution. <i>Chemosphere</i> , 2009 , 75, 115-20	8.4	91
21	Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling. <i>Chemosphere</i> , 2009 , 77, 1558-68	8.4	51
20	Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate. <i>Toxicology Letters</i> , 2009 , 190, 134-9	4.4	28
19	Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 312-7	10.3	156
18	Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). <i>Environmental Pollution</i> , 2008 , 152, 621-9	9.3	139
17	Dramatic changes in the temporal trends of polybrominated diphenyl ethers (PBDEs) in herring gull eggs from the Laurentian Great Lakes: 1982-2006. <i>Environmental Science & Environmental Science & En</i>	10.3	129
16	Target tissue selectivity and burdens of diverse classes of brominated and chlorinated contaminants in polar bears (Ursus maritimus) from East Greenland. <i>Environmental Science & Early Technology</i> , 2008 , 42, 752-9	10.3	91
15	Analysis of fluorotelomer alcohols and perfluorinated sulfonamides in biotic samples by liquid chromatography-atmospheric pressure photoionization mass spectrometry. <i>Journal of Chromatography A</i> , 2008 , 1215, 92-9	4.5	50
14	Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes. <i>Environmental Science & Environmental &</i>	10.3	204
13	Brominated flame retardants in glaucous gulls from the Norwegian Arctic: more than just an issue of polybrominated diphenyl ethers. <i>Environmental Science & Environmental Sci</i>	10.3	132
12	Organohalogen contamination in breeding glaucous gulls from the Norwegian Arctic: associations with basal metabolism and circulating thyroid hormones. <i>Environmental Pollution</i> , 2007 , 145, 138-45	9.3	64
11	Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus). <i>Environmental Science & Environmental Scie</i>	10.3	93
10	Organohalogen contaminants and metabolites in beluga whale (Delphinapterus leucas) liver from two Canadian populations. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1246-57	3.8	73
9	Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 6021-8	10.3	251
8	Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. <i>Environmental Science & Environmental Science & E</i>	10.3	177
7	New organochlorine contaminants and metabolites in plasma and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2486-99	3.8	72
6	An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife. <i>Science of the Total Environment</i> , 2005 , 351-352, 57-93	10.2	130

LIST OF PUBLICATIONS

5	Dietary accumulation and metabolism of polybrominated diphenyl ethers by juvenile carp (Cyprinus carpio). <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 1939-46	3.8	136
4	Metabolism in the toxicokinetics and fate of brominated flame retardantsa review. <i>Environment International</i> , 2003 , 29, 801-28	12.9	345
3	Methylsulfone polycglorinated biphenyl and 2,2-bis(chlorophenyl)-1,1-dichloroethylene metabolites in beluga whale (Delphinapterus leucas) from the St. Lawrence river estuary and western Hudson bay, Canada. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1378-1388	3.8	5
2	Biotransformation versus Bioaccumulation: Sources of Methyl Sulfone PCB and 4,4EDDE Metabolites in the Polar Bear Food Chain. <i>Environmental Science & Environmental Science &</i>	1 ^{10.3}	92
1	Electron Capture/Negative Ionization Mass Spectrometric Characteristics of Bioaccumulating Methyl Sulfone-Substituted Polychlorinated Biphenyls. <i>Journal of Mass Spectrometry</i> , 1997 , 32, 232-240	2.2	9