Anselmo Nogueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335007/publications.pdf

Version: 2024-02-01

28	676	13 h-index	24
papers	citations		g-index
31	31	31	1332
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ant diversity studies in Brazil: an overview of the myrmecological research in a megadiverse country. Insectes Sociaux, 2022, 69, 105-121.	0.7	9
2	Diameters of phloem sieve elements can predict stem growth rates of woody plants. Tree Physiology, 2022, 42, 1560-1569.	1.4	2
3	Extrafloral nectar production induced by simulated herbivory does not improve ant bodyguard attendance and ultimately plant defence. Biological Journal of the Linnean Society, 2022, 135, 429-446.	0.7	2
4	Hydro-Edaphic Gradient and Phylogenetic History Explain the Landscape Distribution of a Highly Diverse Clade of Lianas in the Brazilian Amazon. Frontiers in Forests and Global Change, 2022, 5, .	1.0	2
5	A sophisticated case of division of labour in the trimorphic stamens of the <i>Cassia fistula </i> (Leguminosae) flower. AoB PLANTS, 2021, 13, plab054.	1.2	9
6	Differences of the stem vascular system across populations of two tropical species under contrasting water conditions. IAWA Journal, 2021, -1, 1-18.	0.5	1
7	Higher rates of liana regeneration after canopy fall drives species abundance patterns in central Amazonia. Journal of Ecology, 2020, 108, 1311-1321.	1.9	10
8	Variation in the production of plant tissues bearing extrafloral nectaries explains temporal patterns of ant attendance in Amazonian understorey plants. Journal of Ecology, 2020, 108, 1578-1591.	1.9	19
9	Interspecific anatomical differences result in similar highly flexible stems in Bignoniaceae lianas. American Journal of Botany, 2020, 107, 1622-1634.	0.8	6
10	Beyond robbery: the role of upside-down behaviour performed by small oil-collecting bees in Malpighiaceae. Arthropod-Plant Interactions, 2020, 14, 613-621.	0.5	9
11	EFFECTS OF CLIMATE CHANGE ON CENTRAL AMAZONIAN FORESTS: A TWO DECADES SYNTHESIS OF MONITORING TROPICAL BIODIVERSITY. , 2020, 24, 317-335.		18
12	Blowdown disturbance effect on the density, richness and species composition of the seed bank in Central Amazonia. Forest Ecology and Management, 2019, 453, 117633.	1.4	11
13	Local dynamic variation of lianas along topography maintains unchanging abundance at the landscape scale in central Amazonia. Journal of Vegetation Science, 2018, 29, 651-661.	1.1	12
14	Relationship of floral morphology and development with the pattern of bee visitation in a species with pollen-flowers, Chamaecrista desvauxii (Fabaceae). Botanical Journal of the Linnean Society, 2018, 187, 137-156.	0.8	8
15	Duration of cambial activity is determined by water availability while cambial stimulus is day-length dependent in a Neotropical evergreen species. Environmental and Experimental Botany, 2017, 141, 50-59.	2.0	11
16	Effect of mutualistic and antagonistic bees on floral resources and pollination of a savanna shrub. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 30-38.	0.6	14
17	Floral nectar production and nectary structure of a beeâ€pollinated shrub from <scp>N</scp> eotropical savanna. Plant Biology, 2016, 18, 26-36.	1.8	17
18	Evidence of between-population differences in natural selection on extra-floral nectaries of the shrub Anemopaegma album (Bignoniaceae). Botany, 2016, 94, 201-213.	0.5	1

#	Article	IF	CITATION
19	Morphology, secretion composition, and ecological aspects of stipular colleters in Rubiaceae species from tropical forest and savanna. Die Naturwissenschaften, 2015, 102, 73.	0.6	25
20	Geographic Mosaic of Plant Evolution: Extrafloral Nectary Variation Mediated by Ant and Herbivore Assemblages. PLoS ONE, 2015, 10, e0123806.	1.1	26
21	Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecology and Diversity, 2014, 7, 241-253.	1.0	112
22	Trichome structure and evolution in Neotropical lianas. Annals of Botany, 2013, 112, 1331-1350.	1.4	47
23	Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna. Journal of Evolutionary Biology, 2012, 25, 2325-2340.	0.8	28
24	How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 2012, 23, 366-373.	2.6	77
25	Do extrafloral nectaries present a defensive role against herbivores in two species of the family Bignoniaceae in a Neotropical savannas?. Plant Ecology, 2012, 213, 289-301.	0.7	39
26	The Brazilian Program for Biodiversity Research (PPBio) Information System. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 265-274.	0.2	23
27	Liana Abundance Patterns: The Role of Ecological Filters during Development. Biotropica, 2011, 43, 442-449.	0.8	21
28	Photosynthesis and Water Use Efficiency in Twenty Tropical Tree Species of Differing Succession Status in a Brazilian Reforestation. Photosynthetica, 2004, 42, 351-356.	0.9	64