Willem Jan van de Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6334875/publications.pdf Version: 2024-02-01

73 papers	10,065 citations	57758 44 h-index	⁸²⁵⁴⁷ 72 g-index
121 all docs	121 docs citations	121 times ranked	6254 citing authors

#	Article	IF	CITATIONS
1	A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 2012, 338, 1183-1189.	12.6	1,246
2	Recent Antarctic ice mass loss from radarÂinterferometry and regional climateÂmodelling. Nature Geoscience, 2008, 1, 106-110.	12.9	819
3	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	27.8	759
4	Partitioning Recent Greenland Mass Loss. Science, 2009, 326, 984-986.	12.6	755
5	Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 2020, 579, 233-239.	27.8	434
6	Higher surface mass balance of the Greenland ice sheet revealed by highâ€resolution climate modeling. Geophysical Research Letters, 2009, 36, .	4.0	430
7	On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 2016, 10, 1933-1946.	3.9	358
8	A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. Journal of Climate, 2008, 21, 3359-3387.	3.2	344
9	A new, highâ€resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 2012, 39, .	4.0	315
10	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ2: Antarctica (1979–2016). Cryosphere, 2018, 12, 1479-1498.	3.9	268
11	Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research, 2006, 111, .	3.3	236
12	The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 2011, 6, 014005.	5.2	207
13	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ1: Greenland (1958–2016). Cryosphere, 2018, 12, 811-831.	3.9	194
14	Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters, 2014, 41, 7209-7216.	4.0	190
15	Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 2015, 9, 1831-1844.	3.9	175
16	Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 2019, 13, 281-296.	3.9	171
17	A highâ€resolution record of Greenland mass balance. Geophysical Research Letters, 2016, 43, 7002-7010.	4.0	146
18	Elevation Changes in Antarctica Mainly Determined by Accumulation Variability. Science, 2008, 320, 1626-1629	12.6	138

#	Article	IF	CITATIONS
19	Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 2017, 7, 58-62.	18.8	138
20	Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 2019, 5, eaaw0123.	10.3	136
21	Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation. Cryosphere, 2010, 4, 511-527.	3.9	132
22	AÂdaily, 1â€ ⁻ km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere, 2016, 10, 2361-2377.	3.9	126
23	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	3.9	111
24	A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research, 2011, 116, .	3.3	107
25	Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. Cryosphere, 2012, 6, 1275-1294.	3.9	106
26	Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics, 2013, 41, 867-884.	3.8	104
27	Extreme Precipitation and Climate Gradients in Patagonia Revealed by High-Resolution Regional Atmospheric Climate Modeling. Journal of Climate, 2014, 27, 4607-4621.	3.2	97
28	Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geoscience, 2011, 4, 679-683.	12.9	94
29	Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Current Climate Change Reports, 2017, 3, 345-356.	8.6	94
30	The modelled surface mass balance of the Antarctic Peninsula at 5.5†km horizontal resolution. Cryosphere, 2016, 10, 271-285.	3.9	89
31	Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance. Cryosphere, 2010, 4, 529-544.	3.9	81
32	Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. Journal of Geophysical Research, 2012, 117, .	3.3	81
33	Snowfall in coastal West Antarctica much greater than previously assumed. Geophysical Research Letters, 2006, 33, .	4.0	75
34	A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 2017, 8, 14730.	12.8	72
35	Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 2014, 8, 125-135.	3.9	67
36	Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10622-E10631.	7.1	66

Willem Jan van de Berg

#	Article	IF	CITATIONS
37	Six Decades of Glacial Mass Loss in the Canadian Arctic Archipelago. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1430-1449.	2.8	65
38	Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Climate of the Past, 2013, 9, 1773-1788.	3.4	62
39	Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf. Geophysical Research Letters, 2017, 44, 9796-9804.	4.0	61
40	Temperature and Wind Climate of the Antarctic Peninsula as Simulated by a High-Resolution Regional Atmospheric Climate Model. Journal of Climate, 2015, 28, 7306-7326.	3.2	60
41	What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere, 2021, 15, 3751-3784.	3.9	55
42	Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet. Cryosphere, 2012, 6, 255-272.	3.9	54
43	Identification of Antarctic ablation areas using a regional atmospheric climate model. Journal of Geophysical Research, 2006, 111, .	3.3	53
44	Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 2020, 11, 4597.	12.8	52
45	Oceanographic Controls on the Variability of Iceâ€5helf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica. Journal of Geophysical Research: Oceans, 2017, 122, 10131-10155.	2.6	49
46	Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere, 2014, 8, 1871-1883.	3.9	43
47	Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Annals of Glaciology, 2018, 59, 29-41.	1.4	40
48	Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balanceÂvariabilityÂinÂAntarctica. Cryosphere, 2016, 10, 459-463.	3.9	35
49	Firn depth correction along the Antarctic grounding line. Antarctic Science, 2008, 20, 513-517.	0.9	34
50	Experimental verification of Lorentz' linearization procedure for quadratic friction. Fluid Dynamics Research, 2005, 36, 175-188.	1.3	31
51	Modelling the evolution of the Antarctic ice sheet since the last interglacial. Cryosphere, 2014, 8, 1347-1360.	3.9	31
52	Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. Journal of Geophysical Research, 2011, 116, .	3.3	30
53	A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters, 2021, 48, e2020GL090471.	4.0	29
54	Heat budget of the East Antarctic lower atmosphere derived from a regional atmospheric climate model. Journal of Geophysical Research, 2007, 112, .	3.3	26

Willem Jan van de Berg

#	Article	IF	CITATIONS
55	A benchmark dataset of in situ Antarctic surface melt rates and energy balance. Journal of Glaciology, 2020, 66, 291-302.	2.2	25
56	Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryosphere, 2014, 8, 801-814.	3.9	22
57	Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland). Cryosphere, 2017, 11, 805-825.	3.9	17
58	Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling. Cryosphere, 2020, 14, 3367-3380.	3.9	17
59	Spatial Variability of the Snowmeltâ€Albedo Feedback in Antarctica. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005696.	2.8	13
60	OBLIMAP 2.0: a fast climate model–ice sheet model coupler including online embeddable mapping routines. Geoscientific Model Development, 2016, 9, 4111-4132.	3.6	13
61	A model study of the effect of climate and sea-level change on the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to 2100. Climate Dynamics, 2015, 45, 837-851.	3.8	12
62	Evaluation of a new snow albedo scheme for the Greenland ice sheet in the Regional Atmospheric Climate Model (RACMO2). Cryosphere, 2020, 14, 3645-3662.	3.9	12
63	A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2. Geoscientific Model Development, 2019, 12, 5157-5175.	3.6	11
64	Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. Cryosphere, 2020, 14, 1425-1435.	3.9	11
65	Importance of precipitation seasonality for the interpretation of Eemian ice core isotope records from Greenland. Climate of the Past, 2013, 9, 1589-1600.	3.4	10
66	Uncertainty in East Antarctic Firn Thickness Constrained Using a Model Ensemble Approach. Geophysical Research Letters, 2021, 48, e2020GL092060.	4.0	10
67	Mass balance of the SÃ,r Rondane glacial system, East Antarctica. Annals of Glaciology, 2015, 56, 63-69.	1.4	9
68	A Multidisciplinary Perspective on Climate Model Evaluation For Antarctica. Bulletin of the American Meteorological Society, 2016, 97, ES23-ES26.	3.3	7
69	Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet. Cryosphere, 2021, 15, 1823-1844.	3.9	7
70	The added value of high resolution in estimating the surface mass balance in southern Greenland. Cryosphere, 2020, 14, 1809-1827.	3.9	7
71	Coralline Algae Archive Fjord Surface Water Temperatures in Southwest Greenland. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2617-2626.	3.0	5
72	Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3. Cryosphere, 2022, 16, 1071-1089.	3.9	1

#	Article	IF	CITATIONS
73	Towards a re-assessment of the surface mass balance of the Greenland ice sheet. EPJ Web of Conferences, 2009, 1, 171-176.	0.3	Ο