Venugopalan D Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6334573/publications.pdf

Version: 2024-02-01

236612 233125 2,277 51 25 45 citations h-index g-index papers 53 53 53 3922 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E260-E277.	1.8	13
2	Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Reports, 2022, 38, 110467.	2.9	27
3	Optimization of the Omni-ATAC protocol to chromatin accessibility profiling in snap-frozen rat adipose and muscle tissues. MethodsX, 2022, 9, 101681.	0.7	1
4	Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 andÂFibroblast Growth Factors Than Mild Symptomatic COVID-19. Frontiers in Immunology, 2022, 13, 821730.	2.2	21
5	Multi-omics profiling of single nuclei from frozen archived postmortem human pituitary tissue. STAR Protocols, 2022, 3, 101446.	0.5	7
6	Single nucleus multi-omics regulatory landscape of the murine pituitary. Nature Communications, 2021, 12, 2677.	5.8	38
7	Single Nucleus Transcriptome and Chromatin Accessibility Landscapes of Human Pituitaries. Journal of the Endocrine Society, 2021, 5, A653-A654.	0.1	O
8	Antibody Responses to SARS-CoV-2 Following an Outbreak Among Marine Recruits With Asymptomatic or Mild Infection. Frontiers in Immunology, 2021, 12, 681586.	2.2	6
9	SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study. Lancet Respiratory Medicine, the, 2021, 9, 712-720.	5.2	136
10	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	5 . 8	21
11	Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics, 2021, 113, 3827-3841.	1.3	11
12	Skeletal muscle transcriptional networks linked to type I myofiber grouping in Parkinson's disease. Journal of Applied Physiology, 2020, 128, 229-240.	1.2	18
13	SARS-CoV-2 Transmission among Marine Recruits during Quarantine. New England Journal of Medicine, 2020, 383, 2407-2416.	13.9	94
14	Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20729-20740.	3.3	59
15	A human liver cell-based system modeling a clinical prognostic liver signature combined with single cell RNA-seq for discovery of novel liver disease therapeutics. Journal of Hepatology, 2020, 73, S28-S29.	1.8	O
16	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	13.5	147
17	Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Frontiers in Physiology, 2020, 11, 653.	1.3	15
18	Sedentary and Trained Older Men Have Distinct Circulating Exosomal microRNA Profiles at Baseline and in Response to Acute Exercise. Frontiers in Physiology, 2020, 11, 605.	1.3	52

#	Article	IF	Citations
19	Single-cell transcriptional profiles in human skeletal muscle. Scientific Reports, 2020, 10, 229.	1.6	188
20	Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. Journal of Virology, 2019, 93, .	1.5	65
21	Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. Journal of the Endocrine Society, 2019, 3, 902-920.	0.1	13
22	Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients WithÂSevere Alcoholic Hepatitis. Gastroenterology, 2018, 154, 965-975.	0.6	41
23	In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment. Experimental and Molecular Medicine, 2018, 50, e419-e419.	3.2	37
24	Single-cell stabilization method identifies gonadotrope transcriptional dynamics and pituitary cell type heterogeneity. Nucleic Acids Research, 2018, 46, 11370-11380.	6.5	21
25	Regulatory Architecture of the L \hat{I}^2 T2 Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone. Frontiers in Endocrinology, 2018, 9, 34.	1.5	15
26	Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson's disease striatum. Neuroscience Letters, 2016, 629, 99-104.	1.0	54
27	Molecular Liver Cancer Prevention in Cirrhosis by Organ Transcriptome Analysis and Lysophosphatidic Acid Pathway Inhibition. Cancer Cell, 2016, 30, 879-890.	7.7	172
28	Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver International, 2016, 36, 108-118.	1.9	93
29	Lowâ€variance RNAs identify Parkinson's disease molecular signature in blood. Movement Disorders, 2015, 30, 813-821.	2.2	18
30	A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut, 2015, 64, 1296-1302.	6.1	70
31	MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Research, 2013, 11, 1299-1313.	0.3	37
32	Localization of BRCA1 protein in breast cancer tissue and cell lines with mutations. Cancer Cell International, 2013, 13, 70.	1.8	13
33	Involvement of Histone Demethylase LSD1 in Short-Time-Scale Gene Expression Changes during Cell Cycle Progression in Embryonic Stem Cells. Molecular and Cellular Biology, 2012, 32, 4861-4876.	1.1	32
34	Differential Modulation of Akt/Glycogen Synthase Kinase-3Î ² Pathway Regulates Apoptotic and Cytoprotective Signaling Responses. Journal of Biological Chemistry, 2008, 283, 15469-15478.	1.6	79
35	Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson's disease. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 955-966.	2.2	74
36	p53 Mediates Nontranscriptional Cell Death in Dopaminergic Cells in Response to Proteasome Inhibition. Journal of Biological Chemistry, 2006, 281, 39550-39560.	1.6	85

#	Article	IF	CITATIONS
37	Modulation of Agonist Binding to Human Dopamine Receptor Subtypes by l-Prolyl-l-leucyl-glycinamide and a Peptidomimetic Analog. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1228-1236.	1.3	41
38	Early Single Cell Bifurcation of Pro- and Antiapoptotic States during Oxidative Stress. Journal of Biological Chemistry, 2004, 279, 27494-27501.	1.6	86
39	Cocaine treatment increases expression of a 40 kDa catecholamine-regulated protein in discrete brain regions. Synapse, 2003, 47, 33-44.	0.6	18
40	Agonist-specific Transactivation of Phosphoinositide 3-Kinase Signaling Pathway Mediated by the Dopamine D2 Receptor. Journal of Biological Chemistry, 2003, 278, 47053-47061.	1.6	85
41	Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines. Biochemical Journal, 2003, 373, 25-32.	1.7	76
42	Molecular cloning, localization and characterization of a 40-kDa catecholamine-regulated protein. Journal of Neurochemistry, 2001, 76, 1142-1152.	2.1	16
43	Immunohistochemical localization of a 40-kDa catecholamine regulated protein in the nigrostriatal pathway. Brain Research, 2001, 900, 314-319.	1.1	8
44	Modulation of a 40-kDa catecholamine regulated protein by dopamine receptor antagonists. European Journal of Pharmacology, 2001, 413, 73-79.	1.7	10
45	Modulation of agonist stimulated adenylyl cyclase and GTPase activity by l-pro-l-leu-glycinamide and its peptidomimetic analogue in rat striatal membranes. Neuroscience Letters, 1999, 269, 21-24.	1.0	19
46	Design, Synthesis, and Dopamine Receptor Modulating Activity of Spiro Bicyclic Peptidomimetics ofl-Prolyl-l-leucyl-glycinamide. Journal of Medicinal Chemistry, 1999, 42, 628-637.	2.9	55
47	Modulation of Dopamine D ₂ Receptor Expression by an NMDA Receptor Antagonist in Rat Brain. Journal of Molecular Neuroscience, 1998, 11, 121-126.	1.1	12
48	Modulation of brain catecholamine absorbing proteins by dopaminergic agents. European Journal of Pharmacology, 1996, 299, 213-220.	1.7	15
49	NMDA and dopamine D2L receptor interaction in human neuroblastoma SH-SY5Y cells involves tyrosine kinase and phosphatase. NeuroReport, 1996, 7, 2937-2940.	0.6	6
50	Interaction of NMDA and Dopamine D _{2L} Receptors in Human Neuroblastoma SH‣Y5Y Cells. Journal of Neurochemistry, 1996, 66, 2390-2393.	2.1	29
51	Ontogenic development of dopamine D4 receptor in rat brain. Developmental Brain Research, 1995, 90, 180-183.	2.1	21